
gnu:guide/make

gnu:guide/make ii

COLLABORATORS

TITLE :

gnu:guide/make

ACTION NAME DATE SIGNATURE

WRITTEN BY April 16, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

gnu:guide/make iii

Contents

1 gnu:guide/make 1

1.1 gnu:guide/make.guide . 1

1.2 make.guide/Overview . 9

1.3 make.guide/Preparing . 9

1.4 make.guide/Reading . 10

1.5 make.guide/Bugs . 10

1.6 make.guide/Introduction . 11

1.7 make.guide/Rule Introduction . 12

1.8 make.guide/Simple Makefile . 13

1.9 make.guide/How Make Works . 15

1.10 make.guide/Variables Simplify . 16

1.11 make.guide/make Deduces . 17

1.12 make.guide/Combine By Dependency . 18

1.13 make.guide/Cleanup . 18

1.14 make.guide/Makefiles . 19

1.15 make.guide/Makefile Contents . 20

1.16 make.guide/Makefile Names . 21

1.17 make.guide/Include . 22

1.18 make.guide/MAKEFILES Variable . 23

1.19 make.guide/Remaking Makefiles . 24

1.20 make.guide/Overriding Makefiles . 25

1.21 make.guide/Rules . 26

1.22 make.guide/Rule Example . 28

1.23 make.guide/Rule Syntax . 28

1.24 make.guide/Wildcards . 29

1.25 make.guide/Wildcard Examples . 30

1.26 make.guide/Wildcard Pitfall . 31

1.27 make.guide/Wildcard Function . 32

1.28 make.guide/Directory Search . 33

1.29 make.guide/General Search . 33

gnu:guide/make iv

1.30 make.guide/Selective Search . 34

1.31 make.guide/Commands-Search . 35

1.32 make.guide/Implicit-Search . 36

1.33 make.guide/Libraries-Search . 37

1.34 make.guide/Phony Targets . 37

1.35 make.guide/Force Targets . 39

1.36 make.guide/Empty Targets . 40

1.37 make.guide/Special Targets . 40

1.38 make.guide/Multiple Targets . 42

1.39 make.guide/Multiple Rules . 43

1.40 make.guide/Static Pattern . 44

1.41 make.guide/Static Usage . 44

1.42 make.guide/Static versus Implicit . 46

1.43 make.guide/Double-Colon . 47

1.44 make.guide/Automatic Dependencies . 47

1.45 make.guide/Commands . 49

1.46 make.guide/Echoing . 51

1.47 make.guide/Execution . 51

1.48 make.guide/Parallel . 52

1.49 make.guide/Errors . 53

1.50 make.guide/Interrupts . 55

1.51 make.guide/Recursion . 55

1.52 make.guide/MAKE Variable . 56

1.53 make.guide/Variables-Recursion . 57

1.54 make.guide/Options-Recursion . 60

1.55 make.guide/-w Option . 62

1.56 make.guide/Sequences . 62

1.57 make.guide/Empty Commands . 64

1.58 make.guide/Using Variables . 64

1.59 make.guide/Reference . 66

1.60 make.guide/Flavors . 66

1.61 make.guide/Advanced . 69

1.62 make.guide/Substitution Refs . 69

1.63 make.guide/Computed Names . 70

1.64 make.guide/Values . 73

1.65 make.guide/Setting . 74

1.66 make.guide/Appending . 75

1.67 make.guide/Override Directive . 76

1.68 make.guide/Defining . 77

gnu:guide/make v

1.69 make.guide/Environment . 78

1.70 make.guide/Conditionals . 79

1.71 make.guide/Conditional Example . 80

1.72 make.guide/Conditional Syntax . 81

1.73 make.guide/Testing Flags . 84

1.74 make.guide/Functions . 84

1.75 make.guide/Syntax of Functions . 85

1.76 make.guide/Text Functions . 86

1.77 make.guide/Filename Functions . 89

1.78 make.guide/Foreach Function . 92

1.79 make.guide/Origin Function . 93

1.80 make.guide/Shell Function . 95

1.81 make.guide/Running . 96

1.82 make.guide/Makefile Arguments . 97

1.83 make.guide/Goals . 97

1.84 make.guide/Instead of Execution . 99

1.85 make.guide/Avoiding Compilation . 100

1.86 make.guide/Overriding . 101

1.87 make.guide/Testing . 102

1.88 make.guide/Options Summary . 103

1.89 make.guide/Implicit Rules . 107

1.90 make.guide/Using Implicit . 108

1.91 make.guide/Catalogue of Rules . 110

1.92 make.guide/Implicit Variables . 113

1.93 make.guide/Chained Rules . 116

1.94 make.guide/Pattern Rules . 117

1.95 make.guide/Pattern Intro . 118

1.96 make.guide/Pattern Examples . 119

1.97 make.guide/Automatic . 120

1.98 make.guide/Pattern Match . 123

1.99 make.guide/Match-Anything Rules . 123

1.100make.guide/Canceling Rules . 125

1.101make.guide/Last Resort . 125

1.102make.guide/Suffix Rules . 126

1.103make.guide/Search Algorithm . 128

1.104make.guide/Archives . 129

1.105make.guide/Archive Members . 130

1.106make.guide/Archive Update . 131

1.107make.guide/Archive Symbols . 132

gnu:guide/make vi

1.108make.guide/Archive Pitfalls . 132

1.109make.guide/Archive Suffix Rules . 133

1.110make.guide/Features . 133

1.111make.guide/Missing . 138

1.112make.guide/Makefile Conventions . 140

1.113make.guide/Makefile Basics . 141

1.114make.guide/Utilities in Makefiles . 142

1.115make.guide/Standard Targets . 143

1.116make.guide/Command Variables . 146

1.117make.guide/Directory Variables . 147

1.118make.guide/Quick Reference . 151

1.119make.guide/Complex Makefile . 156

1.120make.guide/Concept Index . 160

1.121make.guide/Name Index . 198

gnu:guide/make 1 / 206

Chapter 1

gnu:guide/make

1.1 gnu:guide/make.guide

Make

The GNU ‘make’ utility automatically determines which pieces of a
large program need to be recompiled, and issues the commands to
recompile them.

This is Edition 0.47 of the ‘GNU Make Manual’, last updated 1
November 1994 for ‘make’ Version 3.72 Beta.

This manual describes ‘make’ and contains the following chapters:

Overview
Overview of ‘make’.

Introduction
An introduction to ‘make’.

Makefiles
Makefiles tell ‘make’ what to do.

Rules
Rules describe when a file must be remade.

Commands
Commands say how to remake a file.

Using Variables
You can use variables to avoid repetition.

Conditionals
Use or ignore parts of the makefile based
on the values of variables.

Functions
Many powerful ways to manipulate text.

gnu:guide/make 2 / 206

make Invocation
How to invoke ‘make’ on the command line.

Implicit Rules
Use implicit rules to treat many files alike,

based on their file names.

Archives
How ‘make’ can update library archives.

Features
Features GNU ‘make’ has over other ‘make’s.

Missing
What GNU ‘make’ lacks from other ‘make’s.

Makefile Conventions
Conventions for makefiles in GNU programs.

Quick Reference
A quick reference for experienced users.

Complex Makefile
A real example of a straightforward,

but nontrivial, makefile.

Concept Index
Index of Concepts

Name Index
Index of Functions, Variables, & Directives

-- The Detailed Node Listing --

Overview of ‘make’

Preparing
Preparing and Running Make

Reading
On Reading this Text

Bugs
Problems and Bugs

An Introduction to Makefiles

Rule Introduction
What a rule looks like.

Simple Makefile
A Simple Makefile

How Make Works

gnu:guide/make 3 / 206

How ‘make’ Processes This Makefile

Variables Simplify
Variables Make Makefiles Simpler

make Deduces
Letting ‘make’ Deduce the Commands

Combine By Dependency
Another Style of Makefile

Cleanup
Rules for Cleaning the Directory

Writing Makefiles

Makefile Contents
What makefiles contain.

Makefile Names
How to name your makefile.

Include
How one makefile can use another makefile.

MAKEFILES Variable
The environment can specify extra makefiles.

Remaking Makefiles
How makefiles get remade.

Overriding Makefiles
How to override part of one makefile

with another makefile.

Writing Rules

Rule Example
An example explained.

Rule Syntax
General syntax explained.

Wildcards
Using wildcard characters such as ‘*’.

Directory Search
Searching other directories for source files.

Phony Targets
Using a target that is not a real file’s name.

Force Targets
You can use a target without commands
or dependencies to mark other

gnu:guide/make 4 / 206

targets as phony.

Empty Targets
When only the date matters and the
files are empty.

Special Targets
Targets with special built-in meanings.

Multiple Targets
When to make use of several targets in a rule.

Multiple Rules
How to use several rules with the same target.

Static Pattern
Static pattern rules apply to multiple targets

and can vary the dependencies according to
the target name.

Double-Colon
How to use a special kind of rule to allow
several independent rules for one target.

Automatic Dependencies
How to automatically generate rules giving

dependencies from the source files themselves.

Using Wildcard Characters in File Names

Wildcard Examples
Several examples

Wildcard Pitfall
Problems to avoid.

Wildcard Function
How to cause wildcard expansion where

it does not normally take place.

Searching Directories for Dependencies

General Search
Specifying a search path that applies

to every dependency.

Selective Search
Specifying a search path

for a specified class of names.

Commands-Search
How to write shell commands that work together

with search paths.

Implicit-Search

gnu:guide/make 5 / 206

How search paths affect implicit rules.

Libraries-Search
Directory search for link libraries.

Static Pattern Rules

Static Usage
The syntax of static pattern rules.

Static versus Implicit
When are they better than implicit rules?

Writing the Commands in Rules

Echoing
How to control when commands are echoed.

Execution
How commands are executed.

Parallel
How commands can be executed in parallel.

Errors
What happens after a command execution ←↩

error.

Interrupts
What happens when a command is interrupted.

Recursion
Invoking ‘make’ from makefiles.

Sequences
Defining canned sequences of commands.

Empty Commands
Defining useful, do-nothing commands.

Recursive Use of ‘make’

MAKE Variable
The special effects of using ‘$(MAKE)’.

Variables-Recursion
How to communicate variables to a sub-‘make’.

Options-Recursion
How to communicate options to a sub-‘make’.

-w Option
How the ‘-w’ or ‘--print-directory’ option

helps debug use of recursive ‘make’ commands.

gnu:guide/make 6 / 206

How to Use Variables

Reference
How to use the value of a variable.

Flavors
Variables come in two flavors.

Advanced
Advanced features for referencing a variable.

Values
All the ways variables get their values.

Setting
How to set a variable in the makefile.

Appending
How to append more text to the old value

of a variable.

Override Directive
How to set a variable in the makefile even if

the user has set it with a command argument.

Defining
An alternate way to set a variable

to a verbatim string.

Environment
Variable values can come from the environment.

Advanced Features for Reference to Variables

Substitution Refs
Referencing a variable with

substitutions on the value.

Computed Names
Computing the name of the variable to refer to.

Conditional Parts of Makefiles

Conditional Example
Example of a conditional

Conditional Syntax
The syntax of conditionals.

Testing Flags
Conditionals that test flags.

Functions for Transforming Text

gnu:guide/make 7 / 206

Syntax of Functions
How to write a function call.

Text Functions
General-purpose text manipulation functions.

Filename Functions
Functions for manipulating file names.

Foreach Function
Repeat some text with controlled variation.

Origin Function
Find where a variable got its value.

Shell Function
Substitute the output of a shell command.

How to Run ‘make’

Makefile Arguments
How to specify which makefile to use.

Goals
How to use goal arguments to specify which

parts of the makefile to use.

Instead of Execution
How to use mode flags to specify what

kind of thing to do with the commands
in the makefile other than simply
execute them.

Avoiding Compilation
How to avoid recompiling certain files.

Overriding
How to override a variable to specify

an alternate compiler and other things.

Testing
How to proceed past some errors, to

test compilation.

Options Summary
Summary of Options

Using Implicit Rules

Using Implicit
How to use an existing implicit rule

to get the commands for updating a file.

gnu:guide/make 8 / 206

Catalogue of Rules
A list of built-in implicit rules.

Implicit Variables
How to change what predefined rules do.

Chained Rules
How to use a chain of implicit rules.

Pattern Rules
How to define new implicit rules.

Last Resort
How to defining commands for rules
which cannot find any.

Suffix Rules
The old-fashioned style of implicit rule.

Search Algorithm
The precise algorithm for applying

implicit rules.

Defining and Redefining Pattern Rules

Pattern Intro
An introduction to pattern rules.

Pattern Examples
Examples of pattern rules.

Automatic
How to use automatic variables in the

commands of implicit rules.

Pattern Match
How patterns match.

Match-Anything Rules
Precautions you should take prior to

defining rules that can match any
target file whatever.

Canceling Rules
How to override or cancel built-in rules.

Using ‘make’ to Update Archive Files

Archive Members
Archive members as targets.

Archive Update
The implicit rule for archive member targets.

Archive Suffix Rules

gnu:guide/make 9 / 206

You can write a special kind of suffix rule
for updating archives.

Implicit Rule for Archive Member Targets

Archive Symbols
How to update archive symbol directories.

1.2 make.guide/Overview

Overview of ‘make’

The ‘make’ utility automatically determines which pieces of a large
program need to be recompiled, and issues commands to recompile them.
This manual describes GNU ‘make’, which was implemented by Richard
Stallman and Roland McGrath. GNU ‘make’ conforms to section 6.2 of
‘IEEE Standard 1003.2-1992’ (POSIX.2).

Our examples show C programs, since they are most common, but you
can use ‘make’ with any programming language whose compiler can be run
with a shell command. Indeed, ‘make’ is not limited to programs. You
can use it to describe any task where some files must be updated
automatically from others whenever the others change.

Preparing
Preparing and Running Make

Reading
On Reading this Text

Bugs
Problems and Bugs

1.3 make.guide/Preparing

Preparing and Running Make
==========================

To prepare to use ‘make’, you must write a file called the
"makefile" that describes the relationships among files in your program
and provides commands for updating each file. In a program, typically,
the executable file is updated from object files, which are in turn
made by compiling source files.

gnu:guide/make 10 / 206

Once a suitable makefile exists, each time you change some source
files, this simple shell command:

make

suffices to perform all necessary recompilations. The ‘make’ program
uses the makefile data base and the last-modification times of the
files to decide which of the files need to be updated. For each of
those files, it issues the commands recorded in the data base.

You can provide command line arguments to ‘make’ to control which
files should be recompiled, or how. See

How to Run ‘make’
.

1.4 make.guide/Reading

How to Read This Manual
=======================

If you are new to ‘make’, or are looking for a general introduction,
read the first few sections of each chapter, skipping the later
sections. In each chapter, the first few sections contain introductory
or general information and the later sections contain specialized or
technical information. The exception is the second chapter, See

An Introduction to Makefiles
, all of which is introductory.

If you are familiar with other ‘make’ programs, see See

Features of GNU ‘make’
, which lists the enhancements GNU ‘make’ has,

and See
Incompatibilities and Missing Features
, which explains the few

things GNU ‘make’ lacks that others have.

For a quick summary, see See
Options Summary
, See
Quick Reference
,

and See
Special Targets
.

1.5 make.guide/Bugs

gnu:guide/make 11 / 206

Problems and Bugs
=================

If you have problems with GNU ‘make’ or think you’ve found a bug,
please report it to the developers; we cannot promise to do anything but
we might well want to fix it.

Before reporting a bug, make sure you’ve actually found a real bug.
Carefully reread the documentation and see if it really says you can do
what you’re trying to do. If it’s not clear whether you should be able
to do something or not, report that too; it’s a bug in the
documentation!

Before reporting a bug or trying to fix it yourself, try to isolate
it to the smallest possible makefile that reproduces the problem. Then
send us the makefile and the exact results ‘make’ gave you. Also say
what you expected to occur; this will help us decide whether the
problem was really in the documentation.

Once you’ve got a precise problem, please send electronic mail either
through the Internet or via UUCP:

Internet address:
bug-gnu-utils@prep.ai.mit.edu

UUCP path:
mit-eddie!prep.ai.mit.edu!bug-gnu-utils

Please include the version number of ‘make’ you are using. You can get
this information with the command ‘make --version’. Be sure also to
include the type of machine and operating system you are using. If
possible, include the contents of the file ‘config.h’ that is generated
by the configuration process.

Non-bug suggestions are always welcome as well. If you have
questions about things that are unclear in the documentation or are
just obscure features, send a message to the bug reporting address. We
cannot guarantee you’ll get help with your problem, but many seasoned
‘make’ users read the mailing list and they will probably try to help
you out. The maintainers sometimes answer such questions as well, when
time permits.

1.6 make.guide/Introduction

An Introduction to Makefiles

You need a file called a "makefile" to tell ‘make’ what to do. Most
often, the makefile tells ‘make’ how to compile and link a program.

In this chapter, we will discuss a simple makefile that describes
how to compile and link a text editor which consists of eight C source
files and three header files. The makefile can also tell ‘make’ how to

gnu:guide/make 12 / 206

run miscellaneous commands when explicitly asked (for example, to remove
certain files as a clean-up operation). To see a more complex example
of a makefile, see See

Complex Makefile
.

When ‘make’ recompiles the editor, each changed C source file must
be recompiled. If a header file has changed, each C source file that
includes the header file must be recompiled to be safe. Each
compilation produces an object file corresponding to the source file.
Finally, if any source file has been recompiled, all the object files,
whether newly made or saved from previous compilations, must be linked
together to produce the new executable editor.

Rule Introduction
What a rule looks like.

Simple Makefile
A Simple Makefile

How Make Works
How ‘make’ Processes This Makefile

Variables Simplify
Variables Make Makefiles Simpler

make Deduces
Letting ‘make’ Deduce the Commands

Combine By Dependency
Another Style of Makefile

Cleanup
Rules for Cleaning the Directory

1.7 make.guide/Rule Introduction

What a Rule Looks Like
======================

A simple makefile consists of "rules" with the following shape:

TARGET ... : DEPENDENCIES ...
COMMAND
...
...

A "target" is usually the name of a file that is generated by a
program; examples of targets are executable or object files. A target
can also be the name of an action to carry out, such as ‘clean’ (see

gnu:guide/make 13 / 206

Phony Targets
).

A "dependency" is a file that is used as input to create the target.
A target often depends on several files.

A "command" is an action that ‘make’ carries out. A rule may have
more than one command, each on its own line. *Please note:* you need
to put a tab character at the beginning of every command line! This is
an obscurity that catches the unwary.

Usually a command is in a rule with dependencies and serves to
create a target file if any of the dependencies change. However, the
rule that specifies commands for the target need not have dependencies.
For example, the rule containing the delete command associated with the
target ‘clean’ does not have dependencies.

A "rule", then, explains how and when to remake certain files which
are the targets of the particular rule. ‘make’ carries out the
commands on the dependencies to create or update the target. A rule
can also explain how and when to carry out an action. See

Writing Rules
.

A makefile may contain other text besides rules, but a simple
makefile need only contain rules. Rules may look somewhat more
complicated than shown in this template, but all fit the pattern more
or less.

1.8 make.guide/Simple Makefile

A Simple Makefile
=================

Here is a straightforward makefile that describes the way an
executable file called ‘edit’ depends on eight object files which, in
turn, depend on eight C source and three header files.

In this example, all the C files include ‘defs.h’, but only those
defining editing commands include ‘command.h’, and only low level files
that change the editor buffer include ‘buffer.h’.

edit : main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o
cc -o edit main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

main.o : main.c defs.h
cc -c main.c

kbd.o : kbd.c defs.h command.h
cc -c kbd.c

command.o : command.c defs.h command.h

gnu:guide/make 14 / 206

cc -c command.c
display.o : display.c defs.h buffer.h

cc -c display.c
insert.o : insert.c defs.h buffer.h

cc -c insert.c
search.o : search.c defs.h buffer.h

cc -c search.c
files.o : files.c defs.h buffer.h command.h

cc -c files.c
utils.o : utils.c defs.h

cc -c utils.c
clean :

rm edit main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

We split each long line into two lines using backslash-newline; this is
like using one long line, but is easier to read.

To use this makefile to create the executable file called ‘edit’,
type:

make

To use this makefile to delete the executable file and all the object
files from the directory, type:

make clean

In the example makefile, the targets include the executable file
‘edit’, and the object files ‘main.o’ and ‘kbd.o’. The dependencies
are files such as ‘main.c’ and ‘defs.h’. In fact, each ‘.o’ file is
both a target and a dependency. Commands include ‘cc -c main.c’ and
‘cc -c kbd.c’.

When a target is a file, it needs to be recompiled or relinked if any
of its dependencies change. In addition, any dependencies that are
themselves automatically generated should be updated first. In this
example, ‘edit’ depends on each of the eight object files; the object
file ‘main.o’ depends on the source file ‘main.c’ and on the header
file ‘defs.h’.

A shell command follows each line that contains a target and
dependencies. These shell commands say how to update the target file.
A tab character must come at the beginning of every command line to
distinguish commands lines from other lines in the makefile. (Bear in
mind that ‘make’ does not know anything about how the commands work.
It is up to you to supply commands that will update the target file
properly. All ‘make’ does is execute the commands in the rule you have
specified when the target file needs to be updated.)

The target ‘clean’ is not a file, but merely the name of an action.
Since you normally do not want to carry out the actions in this rule,
‘clean’ is not a dependency of any other rule. Consequently, ‘make’
never does anything with it unless you tell it specifically. Note that
this rule not only is not a dependency, it also does not have any
dependencies, so the only purpose of the rule is to run the specified
commands. Targets that do not refer to files but are just actions are

gnu:guide/make 15 / 206

called "phony targets". See
Phony Targets
, for information about this

kind of target. See
Errors in Commands
, to see how to cause ‘make’ to

ignore errors from ‘rm’ or any other command.

1.9 make.guide/How Make Works

How ‘make’ Processes a Makefile
===============================

By default, ‘make’ starts with the first rule (not counting rules
whose target names start with ‘.’). This is called the "default goal".
("Goals" are the targets that ‘make’ strives ultimately to update.
See

Arguments to Specify the Goals
.)

In the simple example of the previous section, the default goal is to
update the executable program ‘edit’; therefore, we put that rule first.

Thus, when you give the command:

make

‘make’ reads the makefile in the current directory and begins by
processing the first rule. In the example, this rule is for relinking
‘edit’; but before ‘make’ can fully process this rule, it must process
the rules for the files that ‘edit’ depends on, which in this case are
the object files. Each of these files is processed according to its
own rule. These rules say to update each ‘.o’ file by compiling its
source file. The recompilation must be done if the source file, or any
of the header files named as dependencies, is more recent than the
object file, or if the object file does not exist.

The other rules are processed because their targets appear as
dependencies of the goal. If some other rule is not depended on by the
goal (or anything it depends on, etc.), that rule is not processed,
unless you tell ‘make’ to do so (with a command such as ‘make clean’).

Before recompiling an object file, ‘make’ considers updating its
dependencies, the source file and header files. This makefile does not
specify anything to be done for them--the ‘.c’ and ‘.h’ files are not
the targets of any rules--so ‘make’ does nothing for these files. But
‘make’ would update automatically generated C programs, such as those
made by Bison or Yacc, by their own rules at this time.

After recompiling whichever object files need it, ‘make’ decides
whether to relink ‘edit’. This must be done if the file ‘edit’ does
not exist, or if any of the object files are newer than it. If an
object file was just recompiled, it is now newer than ‘edit’, so ‘edit’

gnu:guide/make 16 / 206

is relinked.

Thus, if we change the file ‘insert.c’ and run ‘make’, ‘make’ will
compile that file to update ‘insert.o’, and then link ‘edit’. If we
change the file ‘command.h’ and run ‘make’, ‘make’ will recompile the
object files ‘kbd.o’, ‘command.o’ and ‘files.o’ and then link the file
‘edit’.

1.10 make.guide/Variables Simplify

Variables Make Makefiles Simpler
================================

In our example, we had to list all the object files twice in the
rule for ‘edit’ (repeated here):

edit : main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

cc -o edit main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

Such duplication is error-prone; if a new object file is added to the
system, we might add it to one list and forget the other. We can
eliminate the risk and simplify the makefile by using a variable.
"Variables" allow a text string to be defined once and substituted in
multiple places later (see

How to Use Variables
).

It is standard practice for every makefile to have a variable named
‘objects’, ‘OBJECTS’, ‘objs’, ‘OBJS’, ‘obj’, or ‘OBJ’ which is a list
of all object file names. We would define such a variable ‘objects’
with a line like this in the makefile:

objects = main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

Then, each place we want to put a list of the object file names, we can
substitute the variable’s value by writing ‘$(objects)’ (see

How to Use Variables
).

Here is how the complete simple makefile looks when you use a
variable for the object files:

objects = main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

edit : $(objects)
cc -o edit $(objects)

main.o : main.c defs.h
cc -c main.c

gnu:guide/make 17 / 206

kbd.o : kbd.c defs.h command.h
cc -c kbd.c

command.o : command.c defs.h command.h
cc -c command.c

display.o : display.c defs.h buffer.h
cc -c display.c

insert.o : insert.c defs.h buffer.h
cc -c insert.c

search.o : search.c defs.h buffer.h
cc -c search.c

files.o : files.c defs.h buffer.h command.h
cc -c files.c

utils.o : utils.c defs.h
cc -c utils.c

clean :
rm edit $(objects)

1.11 make.guide/make Deduces

Letting ‘make’ Deduce the Commands
==================================

It is not necessary to spell out the commands for compiling the
individual C source files, because ‘make’ can figure them out: it has an
"implicit rule" for updating a ‘.o’ file from a correspondingly named
‘.c’ file using a ‘cc -c’ command. For example, it will use the
command ‘cc -c main.c -o main.o’ to compile ‘main.c’ into ‘main.o’. We
can therefore omit the commands from the rules for the object files.
See

Using Implicit Rules
.

When a ‘.c’ file is used automatically in this way, it is also
automatically added to the list of dependencies. We can therefore omit
the ‘.c’ files from the dependencies, provided we omit the commands.

Here is the entire example, with both of these changes, and a
variable ‘objects’ as suggested above:

objects = main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

edit : $(objects)
cc -o edit $(objects)

main.o : defs.h
kbd.o : defs.h command.h
command.o : defs.h command.h
display.o : defs.h buffer.h
insert.o : defs.h buffer.h
search.o : defs.h buffer.h
files.o : defs.h buffer.h command.h
utils.o : defs.h

gnu:guide/make 18 / 206

.PHONY : clean
clean :

-rm edit $(objects)

This is how we would write the makefile in actual practice. (The
complications associated with ‘clean’ are described elsewhere. See See

Phony Targets
, and See
Errors in Commands
.)

Because implicit rules are so convenient, they are important. You
will see them used frequently.

1.12 make.guide/Combine By Dependency

Another Style of Makefile
=========================

When the objects of a makefile are created only by implicit rules, an
alternative style of makefile is possible. In this style of makefile,
you group entries by their dependencies instead of by their targets.
Here is what one looks like:

objects = main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

edit : $(objects)
cc -o edit $(objects)

$(objects) : defs.h
kbd.o command.o files.o : command.h
display.o insert.o search.o files.o : buffer.h

Here ‘defs.h’ is given as a dependency of all the object files;
‘command.h’ and ‘buffer.h’ are dependencies of the specific object
files listed for them.

Whether this is better is a matter of taste: it is more compact, but
some people dislike it because they find it clearer to put all the
information about each target in one place.

1.13 make.guide/Cleanup

Rules for Cleaning the Directory
================================

gnu:guide/make 19 / 206

Compiling a program is not the only thing you might want to write
rules for. Makefiles commonly tell how to do a few other things besides
compiling a program: for example, how to delete all the object files
and executables so that the directory is ‘clean’.

Here is how we could write a ‘make’ rule for cleaning our example
editor:

clean:
rm edit $(objects)

In practice, we might want to write the rule in a somewhat more
complicated manner to handle unanticipated situations. We would do
this:

.PHONY : clean
clean :

-rm edit $(objects)

This prevents ‘make’ from getting confused by an actual file called
‘clean’ and causes it to continue in spite of errors from ‘rm’. (See
See

Phony Targets
, and See
Errors in Commands
.)

A rule such as this should not be placed at the beginning of the
makefile, because we do not want it to run by default! Thus, in the
example makefile, we want the rule for ‘edit’, which recompiles the
editor, to remain the default goal.

Since ‘clean’ is not a dependency of ‘edit’, this rule will not run
at all if we give the command ‘make’ with no arguments. In order to
make the rule run, we have to type ‘make clean’. See

How to Run ‘make’
.

1.14 make.guide/Makefiles

Writing Makefiles

The information that tells ‘make’ how to recompile a system comes
from reading a data base called the "makefile".

Makefile Contents
What makefiles contain.

Makefile Names
How to name your makefile.

gnu:guide/make 20 / 206

Include
How one makefile can use another makefile.

MAKEFILES Variable
The environment can specify extra makefiles.

Remaking Makefiles
How makefiles get remade.

Overriding Makefiles
How to override part of one makefile

with another makefile.

1.15 make.guide/Makefile Contents

What Makefiles Contain
======================

Makefiles contain five kinds of things: "explicit rules", "implicit
rules", "variable definitions", "directives", and "comments". Rules,
variables, and directives are described at length in later chapters.

* An "explicit rule" says when and how to remake one or more files,
called the rule’s targets. It lists the other files that the
targets "depend on", and may also give commands to use to create
or update the targets. See

Writing Rules
.

* An "implicit rule" says when and how to remake a class of files
based on their names. It describes how a target may depend on a
file with a name similar to the target and gives commands to
create or update such a target. See

Using Implicit Rules
.

* A "variable definition" is a line that specifies a text string
value for a variable that can be substituted into the text later.
The simple makefile example shows a variable definition for
‘objects’ as a list of all object files (see

Variables Make Makefiles Simpler
).

* A "directive" is a command for ‘make’ to do something special while
reading the makefile. These include:

* Reading another makefile (see
Including Other Makefiles
).

* Deciding (based on the values of variables) whether to use or

gnu:guide/make 21 / 206

ignore a part of the makefile (see

Conditional Parts of Makefiles
).

* Defining a variable from a verbatim string containing
multiple lines (see

Defining Variables Verbatim
).

* ‘#’ in a line of a makefile starts a "comment". It and the rest of
the line are ignored, except that a trailing backslash not escaped
by another backslash will continue the comment across multiple
lines. Comments may appear on any of the lines in the makefile,
except within a ‘define’ directive, and perhaps within commands
(where the shell decides what is a comment). A line containing
just a comment (with perhaps spaces before it) is effectively
blank, and is ignored.

1.16 make.guide/Makefile Names

What Name to Give Your Makefile
===============================

By default, when ‘make’ looks for the makefile, it tries the
following names, in order: ‘GNUmakefile’, ‘makefile’ and ‘Makefile’.

Normally you should call your makefile either ‘makefile’ or
‘Makefile’. (We recommend ‘Makefile’ because it appears prominently
near the beginning of a directory listing, right near other important
files such as ‘README’.) The first name checked, ‘GNUmakefile’, is not
recommended for most makefiles. You should use this name if you have a
makefile that is specific to GNU ‘make’, and will not be understood by
other versions of ‘make’. Other ‘make’ programs look for ‘makefile’ and
‘Makefile’, but not ‘GNUmakefile’.

If ‘make’ finds none of these names, it does not use any makefile.
Then you must specify a goal with a command argument, and ‘make’ will
attempt to figure out how to remake it using only its built-in implicit
rules. See

Using Implicit Rules
.

If you want to use a nonstandard name for your makefile, you can
specify the makefile name with the ‘-f’ or ‘--file’ option. The
arguments ‘-f NAME’ or ‘--file=NAME’ tell ‘make’ to read the file NAME
as the makefile. If you use more than one ‘-f’ or ‘--file’ option, you
can specify several makefiles. All the makefiles are effectively
concatenated in the order specified. The default makefile names
‘GNUmakefile’, ‘makefile’ and ‘Makefile’ are not checked automatically
if you specify ‘-f’ or ‘--file’.

gnu:guide/make 22 / 206

1.17 make.guide/Include

Including Other Makefiles
=========================

The ‘include’ directive tells ‘make’ to suspend reading the current
makefile and read one or more other makefiles before continuing. The
directive is a line in the makefile that looks like this:

include FILENAMES...

FILENAMES can contain shell file name patterns.

Extra spaces are allowed and ignored at the beginning of the line,
but a tab is not allowed. (If the line begins with a tab, it will be
considered a command line.) Whitespace is required between ‘include’
and the file names, and between file names; extra whitespace is ignored
there and at the end of the directive. A comment starting with ‘#’ is
allowed at the end of the line. If the file names contain any variable
or function references, they are expanded. See

How to Use Variables
.

For example, if you have three ‘.mk’ files, ‘a.mk’, ‘b.mk’, and
‘c.mk’, and ‘$(bar)’ expands to ‘bish bash’, then the following
expression

include foo *.mk $(bar)

is equivalent to

include foo a.mk b.mk c.mk bish bash

When ‘make’ processes an ‘include’ directive, it suspends reading of
the containing makefile and reads from each listed file in turn. When
that is finished, ‘make’ resumes reading the makefile in which the
directive appears.

One occasion for using ‘include’ directives is when several programs,
handled by individual makefiles in various directories, need to use a
common set of variable definitions (see

Setting Variables
) or pattern

rules (see
Defining and Redefining Pattern Rules
).

Another such occasion is when you want to generate dependencies from
source files automatically; the dependencies can be put in a file that
is included by the main makefile. This practice is generally cleaner
than that of somehow appending the dependencies to the end of the main
makefile as has been traditionally done with other versions of ‘make’.
See

gnu:guide/make 23 / 206

Automatic Dependencies
.

If the specified name does not start with a slash, and the file is
not found in the current directory, several other directories are
searched. First, any directories you have specified with the ‘-I’ or
‘--include-dir’ option are searched (see

Summary of Options
). Then the

following directories (if they exist) are searched, in this order:
‘PREFIX/include’ (normally ‘/usr/local/include’) ‘/usr/gnu/include’,
‘/usr/local/include’, ‘/usr/include’.

If an included makefile cannot be found in any of these directories,
a warning message is generated, but it is not an immediately fatal
error; processing of the makefile containing the ‘include’ continues.
Once it has finished reading makefiles, ‘make’ will try to remake any
that are out of date or don’t exist. See

How Makefiles Are Remade
.

Only after it has tried to find a way to remake a makefile and failed,
will ‘make’ diagnose the missing makefile as a fatal error.

If you want ‘make’ to simply ignore a makefile which does not exist
and cannot be remade, with no error message, use the ‘-include’
directive instead of ‘include’, like this:

-include FILENAMES...

This is acts like ‘include’ in every way except that there is no
error (not even a warning) if any of the FILENAMES do not exist.

1.18 make.guide/MAKEFILES Variable

The Variable ‘MAKEFILES’
========================

If the environment variable ‘MAKEFILES’ is defined, ‘make’ considers
its value as a list of names (separated by whitespace) of additional
makefiles to be read before the others. This works much like the
‘include’ directive: various directories are searched for those files
(see

Including Other Makefiles
). In addition, the default goal is

never taken from one of these makefiles and it is not an error if the
files listed in ‘MAKEFILES’ are not found.

The main use of ‘MAKEFILES’ is in communication between recursive
invocations of ‘make’ (see

Recursive Use of ‘make’
). It usually is not

desirable to set the environment variable before a top-level invocation
of ‘make’, because it is usually better not to mess with a makefile

gnu:guide/make 24 / 206

from outside. However, if you are running ‘make’ without a specific
makefile, a makefile in ‘MAKEFILES’ can do useful things to help the
built-in implicit rules work better, such as defining search paths (see

Directory Search
).

Some users are tempted to set ‘MAKEFILES’ in the environment
automatically on login, and program makefiles to expect this to be done.
This is a very bad idea, because such makefiles will fail to work if
run by anyone else. It is much better to write explicit ‘include’
directives in the makefiles. See

Including Other Makefiles
.

1.19 make.guide/Remaking Makefiles

How Makefiles Are Remade
========================

Sometimes makefiles can be remade from other files, such as RCS or
SCCS files. If a makefile can be remade from other files, you probably
want ‘make’ to get an up-to-date version of the makefile to read in.

To this end, after reading in all makefiles, ‘make’ will consider
each as a goal target and attempt to update it. If a makefile has a
rule which says how to update it (found either in that very makefile or
in another one) or if an implicit rule applies to it (see

Using Implicit Rules
), it will be updated if necessary. After all

makefiles have been checked, if any have actually been changed, ‘make’
starts with a clean slate and reads all the makefiles over again. (It
will also attempt to update each of them over again, but normally this
will not change them again, since they are already up to date.)

If the makefiles specify a double-colon rule to remake a file with
commands but no dependencies, that file will always be remade (see

Double-Colon
). In the case of makefiles, a makefile that has a

double-colon rule with commands but no dependencies will be remade every
time ‘make’ is run, and then again after ‘make’ starts over and reads
the makefiles in again. This would cause an infinite loop: ‘make’
would constantly remake the makefile, and never do anything else. So,
to avoid this, ‘make’ will *not* attempt to remake makefiles which are
specified as double-colon targets but have no dependencies.

If you do not specify any makefiles to be read with ‘-f’ or ‘--file’
options, ‘make’ will try the default makefile names; see

What Name to Give Your Makefile
. Unlike makefiles explicitly requested

gnu:guide/make 25 / 206

with ‘-f’ or ‘--file’ options, ‘make’ is not certain that these
makefiles should exist. However, if a default makefile does not exist
but can be created by running ‘make’ rules, you probably want the rules
to be run so that the makefile can be used.

Therefore, if none of the default makefiles exists, ‘make’ will try
to make each of them in the same order in which they are searched for
(see

What Name to Give Your Makefile
) until it succeeds in making one,

or it runs out of names to try. Note that it is not an error if ‘make’
cannot find or make any makefile; a makefile is not always necessary.

When you use the ‘-t’ or ‘--touch’ option (see

Instead of Executing the Commands
), you would not want to use an

out-of-date makefile to decide which targets to touch. So the ‘-t’
option has no effect on updating makefiles; they are really updated
even if ‘-t’ is specified. Likewise, ‘-q’ (or ‘--question’) and ‘-n’
(or ‘--just-print’) do not prevent updating of makefiles, because an
out-of-date makefile would result in the wrong output for other targets.
Thus, ‘make -f mfile -n foo’ will update ‘mfile’, read it in, and then
print the commands to update ‘foo’ and its dependencies without running
them. The commands printed for ‘foo’ will be those specified in the
updated contents of ‘mfile’.

However, on occasion you might actually wish to prevent updating of
even the makefiles. You can do this by specifying the makefiles as
goals in the command line as well as specifying them as makefiles.
When the makefile name is specified explicitly as a goal, the options
‘-t’ and so on do apply to them.

Thus, ‘make -f mfile -n mfile foo’ would read the makefile ‘mfile’,
print the commands needed to update it without actually running them,
and then print the commands needed to update ‘foo’ without running
them. The commands for ‘foo’ will be those specified by the existing
contents of ‘mfile’.

1.20 make.guide/Overriding Makefiles

Overriding Part of Another Makefile
===================================

Sometimes it is useful to have a makefile that is mostly just like
another makefile. You can often use the ‘include’ directive to include
one in the other, and add more targets or variable definitions.
However, if the two makefiles give different commands for the same
target, ‘make’ will not let you just do this. But there is another way.

In the containing makefile (the one that wants to include the other),
you can use a match-anything pattern rule to say that to remake any
target that cannot be made from the information in the containing

gnu:guide/make 26 / 206

makefile, ‘make’ should look in another makefile. See
Pattern Rules
,

for more information on pattern rules.

For example, if you have a makefile called ‘Makefile’ that says how
to make the target ‘foo’ (and other targets), you can write a makefile
called ‘GNUmakefile’ that contains:

foo:
frobnicate > foo

%: force
@$(MAKE) -f Makefile $@

force: ;

If you say ‘make foo’, ‘make’ will find ‘GNUmakefile’, read it, and
see that to make ‘foo’, it needs to run the command ‘frobnicate > foo’.
If you say ‘make bar’, ‘make’ will find no way to make ‘bar’ in
‘GNUmakefile’, so it will use the commands from the pattern rule: ‘make
-f Makefile bar’. If ‘Makefile’ provides a rule for updating ‘bar’,
‘make’ will apply the rule. And likewise for any other target that
‘GNUmakefile’ does not say how to make.

The way this works is that the pattern rule has a pattern of just
‘%’, so it matches any target whatever. The rule specifies a
dependency ‘force’, to guarantee that the commands will be run even if
the target file already exists. We give ‘force’ target empty commands
to prevent ‘make’ from searching for an implicit rule to build
it--otherwise it would apply the same match-anything rule to ‘force’
itself and create a dependency loop!

1.21 make.guide/Rules

Writing Rules

A "rule" appears in the makefile and says when and how to remake
certain files, called the rule’s "targets" (most often only one per
rule). It lists the other files that are the "dependencies" of the
target, and "commands" to use to create or update the target.

The order of rules is not significant, except for determining the
"default goal": the target for ‘make’ to consider, if you do not
otherwise specify one. The default goal is the target of the first
rule in the first makefile. If the first rule has multiple targets,
only the first target is taken as the default. There are two
exceptions: a target starting with a period is not a default unless it
contains one or more slashes, ‘/’, as well; and, a target that defines
a pattern rule has no effect on the default goal. (See

Defining and Redefining Pattern Rules
.)

gnu:guide/make 27 / 206

Therefore, we usually write the makefile so that the first rule is
the one for compiling the entire program or all the programs described
by the makefile (often with a target called ‘all’). See

Arguments to Specify the Goals
.

Rule Example
An example explained.

Rule Syntax
General syntax explained.

Wildcards
Using wildcard characters such as ‘*’.

Directory Search
Searching other directories for source files.

Phony Targets
Using a target that is not a real file’s name.

Force Targets
You can use a target without commands
or dependencies to mark other
targets as phony.

Empty Targets
When only the date matters and the
files are empty.

Special Targets
Targets with special built-in meanings.

Multiple Targets
When to make use of several targets in a rule.

Multiple Rules
How to use several rules with the same target.

Static Pattern
Static pattern rules apply to multiple targets

and can vary the dependencies according to
the target name.

Double-Colon
How to use a special kind of rule to allow
several independent rules for one target.

Automatic Dependencies
How to automatically generate rules giving

dependencies from the source files themselves.

gnu:guide/make 28 / 206

1.22 make.guide/Rule Example

Rule Example
============

Here is an example of a rule:

foo.o : foo.c defs.h # module for twiddling the frobs
cc -c -g foo.c

Its target is ‘foo.o’ and its dependencies are ‘foo.c’ and ‘defs.h’.
It has one command, which is ‘cc -c -g foo.c’. The command line
starts with a tab to identify it as a command.

This rule says two things:

* How to decide whether ‘foo.o’ is out of date: it is out of date if
it does not exist, or if either ‘foo.c’ or ‘defs.h’ is more recent
than it.

* How to update the file ‘foo.o’: by running ‘cc’ as stated. The
command does not explicitly mention ‘defs.h’, but we presume that
‘foo.c’ includes it, and that that is why ‘defs.h’ was added to
the dependencies.

1.23 make.guide/Rule Syntax

Rule Syntax
===========

In general, a rule looks like this:

TARGETS : DEPENDENCIES
COMMAND
...

or like this:

TARGETS : DEPENDENCIES ; COMMAND
COMMAND
...

The TARGETS are file names, separated by spaces. Wildcard
characters may be used (see

Using Wildcard Characters in File Names
)

and a name of the form ‘A(M)’ represents member M in archive file A
(see

Archive Members as Targets

gnu:guide/make 29 / 206

). Usually there is only one target per
rule, but occasionally there is a reason to have more (see

Multiple Targets in a Rule
).

The COMMAND lines start with a tab character. The first command may
appear on the line after the dependencies, with a tab character, or may
appear on the same line, with a semicolon. Either way, the effect is
the same. See

Writing the Commands in Rules
.

Because dollar signs are used to start variable references, if you
really want a dollar sign in a rule you must write two of them, ‘$$’
(see

How to Use Variables
). You may split a long line by inserting a

backslash followed by a newline, but this is not required, as ‘make’
places no limit on the length of a line in a makefile.

A rule tells ‘make’ two things: when the targets are out of date,
and how to update them when necessary.

The criterion for being out of date is specified in terms of the
DEPENDENCIES, which consist of file names separated by spaces.
(Wildcards and archive members (see

Archives
) are allowed here too.) A

target is out of date if it does not exist or if it is older than any
of the dependencies (by comparison of last-modification times). The
idea is that the contents of the target file are computed based on
information in the dependencies, so if any of the dependencies changes,
the contents of the existing target file are no longer necessarily
valid.

How to update is specified by COMMANDS. These are lines to be
executed by the shell (normally ‘sh’), but with some extra features
(see

Writing the Commands in Rules
).

1.24 make.guide/Wildcards

Using Wildcard Characters in File Names
=======================================

A single file name can specify many files using "wildcard
characters". The wildcard characters in ‘make’ are ‘*’, ‘?’ and
‘[...]’, the same as in the Bourne shell. For example, ‘*.c’ specifies
a list of all the files (in the working directory) whose names end in
‘.c’.

gnu:guide/make 30 / 206

The character ‘~’ at the beginning of a file name also has special
significance. If alone, or followed by a slash, it represents your home
directory. For example ‘~/bin’ expands to ‘/home/you/bin’. If the ‘~’
is followed by a word, the string represents the home directory of the
user named by that word. For example ‘~john/bin’ expands to
‘/home/john/bin’.

Wildcard expansion happens automatically in targets, in dependencies,
and in commands (where the shell does the expansion). In other
contexts, wildcard expansion happens only if you request it explicitly
with the ‘wildcard’ function.

The special significance of a wildcard character can be turned off by
preceding it with a backslash. Thus, ‘foo*bar’ would refer to a
specific file whose name consists of ‘foo’, an asterisk, and ‘bar’.

Wildcard Examples
Several examples

Wildcard Pitfall
Problems to avoid.

Wildcard Function
How to cause wildcard expansion where

it does not normally take place.

1.25 make.guide/Wildcard Examples

Wildcard Examples

Wildcards can be used in the commands of a rule, where they are
expanded by the shell. For example, here is a rule to delete all the
object files:

clean:
rm -f *.o

Wildcards are also useful in the dependencies of a rule. With the
following rule in the makefile, ‘make print’ will print all the ‘.c’
files that have changed since the last time you printed them:

print: *.c
lpr -p $?
touch print

This rule uses ‘print’ as an empty target file; see See

Empty Target Files to Record Events
. (The automatic variable ‘$?’ is

used to print only those files that have changed; see See

gnu:guide/make 31 / 206

Automatic Variables
.)

Wildcard expansion does not happen when you define a variable.
Thus, if you write this:

objects = *.o

then the value of the variable ‘objects’ is the actual string ‘*.o’.
However, if you use the value of ‘objects’ in a target, dependency or
command, wildcard expansion will take place at that time. To set
‘objects’ to the expansion, instead use:

objects := $(wildcard *.o)

See
Wildcard Function
.

1.26 make.guide/Wildcard Pitfall

Pitfalls of Using Wildcards

Now here is an example of a naive way of using wildcard expansion,
that does not do what you would intend. Suppose you would like to say
that the executable file ‘foo’ is made from all the object files in the
directory, and you write this:

objects = *.o

foo : $(objects)
cc -o foo $(CFLAGS) $(objects)

The value of ‘objects’ is the actual string ‘*.o’. Wildcard expansion
happens in the rule for ‘foo’, so that each *existing* ‘.o’ file
becomes a dependency of ‘foo’ and will be recompiled if necessary.

But what if you delete all the ‘.o’ files? When a wildcard matches
no files, it is left as it is, so then ‘foo’ will depend on the
oddly-named file ‘*.o’. Since no such file is likely to exist, ‘make’
will give you an error saying it cannot figure out how to make ‘*.o’.
This is not what you want!

Actually it is possible to obtain the desired result with wildcard
expansion, but you need more sophisticated techniques, including the
‘wildcard’ function and string substitution. See

The Function ‘wildcard’
.

gnu:guide/make 32 / 206

1.27 make.guide/Wildcard Function

The Function ‘wildcard’

Wildcard expansion happens automatically in rules. But wildcard
expansion does not normally take place when a variable is set, or
inside the arguments of a function. If you want to do wildcard
expansion in such places, you need to use the ‘wildcard’ function, like
this:

$(wildcard PATTERN...)

This string, used anywhere in a makefile, is replaced by a
space-separated list of names of existing files that match one of the
given file name patterns. If no existing file name matches a pattern,
then that pattern is omitted from the output of the ‘wildcard’
function. Note that this is different from how unmatched wildcards
behave in rules, where they are used verbatim rather than ignored (see

Wildcard Pitfall
).

One use of the ‘wildcard’ function is to get a list of all the C
source files in a directory, like this:

$(wildcard *.c)

We can change the list of C source files into a list of object files
by replacing the ‘.o’ suffix with ‘.c’ in the result, like this:

$(patsubst %.c,%.o,$(wildcard *.c))

(Here we have used another function, ‘patsubst’. See

Functions for String Substitution and Analysis
.)

Thus, a makefile to compile all C source files in the directory and
then link them together could be written as follows:

objects := $(patsubst %.c,%.o,$(wildcard *.c))

foo : $(objects)
cc -o foo $(objects)

(This takes advantage of the implicit rule for compiling C programs, so
there is no need to write explicit rules for compiling the files. See

The Two Flavors of Variables
, for an explanation of ‘:=’, which is a

variant of ‘=’.)

gnu:guide/make 33 / 206

1.28 make.guide/Directory Search

Searching Directories for Dependencies
======================================

For large systems, it is often desirable to put sources in a separate
directory from the binaries. The "directory search" features of ‘make’
facilitate this by searching several directories automatically to find
a dependency. When you redistribute the files among directories, you
do not need to change the individual rules, just the search paths.

General Search
Specifying a search path that applies

to every dependency.

Selective Search
Specifying a search path

for a specified class of names.

Commands-Search
How to write shell commands that work together

with search paths.

Implicit-Search
How search paths affect implicit rules.

Libraries-Search
Directory search for link libraries.

1.29 make.guide/General Search

‘VPATH’: Search Path for All Dependencies

The value of the ‘make’ variable ‘VPATH’ specifies a list of
directories that ‘make’ should search. Most often, the directories are
expected to contain dependency files that are not in the current
directory; however, ‘VPATH’ specifies a search list that ‘make’ applies
for all files, including files which are targets of rules.

Thus, if a file that is listed as a target or dependency does not
exist in the current directory, ‘make’ searches the directories listed
in ‘VPATH’ for a file with that name. If a file is found in one of
them, that file becomes the dependency. Rules may then specify the
names of source files in the dependencies as if they all existed in the
current directory. See

gnu:guide/make 34 / 206

Writing Shell Commands with Directory Search
.

In the ‘VPATH’ variable, directory names are separated by colons or
blanks. The order in which directories are listed is the order followed
by ‘make’ in its search.

For example,

VPATH = src:../headers

specifies a path containing two directories, ‘src’ and ‘../headers’,
which ‘make’ searches in that order.

With this value of ‘VPATH’, the following rule,

foo.o : foo.c

is interpreted as if it were written like this:

foo.o : src/foo.c

assuming the file ‘foo.c’ does not exist in the current directory but
is found in the directory ‘src’.

1.30 make.guide/Selective Search

The ‘vpath’ Directive

Similar to the ‘VPATH’ variable but more selective is the ‘vpath’
directive (note lower case), which allows you to specify a search path
for a particular class of file names, those that match a particular
pattern. Thus you can supply certain search directories for one class
of file names and other directories (or none) for other file names.

There are three forms of the ‘vpath’ directive:

‘vpath PATTERN DIRECTORIES’
Specify the search path DIRECTORIES for file names that match
PATTERN.

The search path, DIRECTORIES, is a list of directories to be
searched, separated by colons or blanks, just like the search path
used in the ‘VPATH’ variable.

‘vpath PATTERN’
Clear out the search path associated with PATTERN.

‘vpath’
Clear all search paths previously specified with ‘vpath’
directives.

gnu:guide/make 35 / 206

A ‘vpath’ pattern is a string containing a ‘%’ character. The
string must match the file name of a dependency that is being searched
for, the ‘%’ character matching any sequence of zero or more characters
(as in pattern rules; see

Defining and Redefining Pattern Rules
). For

example, ‘%.h’ matches files that end in ‘.h’. (If there is no ‘%’,
the pattern must match the dependency exactly, which is not useful very
often.)

‘%’ characters in a ‘vpath’ directive’s pattern can be quoted with
preceding backslashes (‘\’). Backslashes that would otherwise quote
‘%’ characters can be quoted with more backslashes. Backslashes that
quote ‘%’ characters or other backslashes are removed from the pattern
before it is compared to file names. Backslashes that are not in
danger of quoting ‘%’ characters go unmolested.

When a dependency fails to exist in the current directory, if the
PATTERN in a ‘vpath’ directive matches the name of the dependency file,
then the DIRECTORIES in that directive are searched just like (and
before) the directories in the ‘VPATH’ variable.

For example,

vpath %.h ../headers

tells ‘make’ to look for any dependency whose name ends in ‘.h’ in the
directory ‘../headers’ if the file is not found in the current
directory.

If several ‘vpath’ patterns match the dependency file’s name, then
‘make’ processes each matching ‘vpath’ directive one by one, searching
all the directories mentioned in each directive. ‘make’ handles
multiple ‘vpath’ directives in the order in which they appear in the
makefile; multiple directives with the same pattern are independent of
each other.

Thus,

vpath %.c foo
vpath % blish
vpath %.c bar

will look for a file ending in ‘.c’ in ‘foo’, then ‘blish’, then ‘bar’,
while

vpath %.c foo:bar
vpath % blish

will look for a file ending in ‘.c’ in ‘foo’, then ‘bar’, then ‘blish’.

1.31 make.guide/Commands-Search

gnu:guide/make 36 / 206

Writing Shell Commands with Directory Search
--

When a dependency is found in another directory through directory
search, this cannot change the commands of the rule; they will execute
as written. Therefore, you must write the commands with care so that
they will look for the dependency in the directory where ‘make’ finds
it.

This is done with the "automatic variables" such as ‘$^’ (see

Automatic Variables
). For instance, the value of ‘$^’ is a list of all

the dependencies of the rule, including the names of the directories in
which they were found, and the value of ‘$@’ is the target. Thus:

foo.o : foo.c
cc -c $(CFLAGS) $^ -o $@

(The variable ‘CFLAGS’ exists so you can specify flags for C
compilation by implicit rules; we use it here for consistency so it will
affect all C compilations uniformly; see

Variables Used by Implicit Rules
.)

Often the dependencies include header files as well, which you do not
want to mention in the commands. The automatic variable ‘$<’ is just
the first dependency:

VPATH = src:../headers
foo.o : foo.c defs.h hack.h

cc -c $(CFLAGS) $< -o $@

1.32 make.guide/Implicit-Search

Directory Search and Implicit Rules

The search through the directories specified in ‘VPATH’ or with
‘vpath’ also happens during consideration of implicit rules (see

Using Implicit Rules
).

For example, when a file ‘foo.o’ has no explicit rule, ‘make’
considers implicit rules, such as the built-in rule to compile ‘foo.c’
if that file exists. If such a file is lacking in the current
directory, the appropriate directories are searched for it. If ‘foo.c’
exists (or is mentioned in the makefile) in any of the directories, the
implicit rule for C compilation is applied.

gnu:guide/make 37 / 206

The commands of implicit rules normally use automatic variables as a
matter of necessity; consequently they will use the file names found by
directory search with no extra effort.

1.33 make.guide/Libraries-Search

Directory Search for Link Libraries

Directory search applies in a special way to libraries used with the
linker. This special feature comes into play when you write a
dependency whose name is of the form ‘-lNAME’. (You can tell something
strange is going on here because the dependency is normally the name of
a file, and the *file name* of the library looks like ‘libNAME.a’, not
like ‘-lNAME’.)

When a dependency’s name has the form ‘-lNAME’, ‘make’ handles it
specially by searching for the file ‘libNAME.a’ in the current
directory, in directories specified by matching ‘vpath’ search paths
and the ‘VPATH’ search path, and then in the directories ‘/lib’,
‘/usr/lib’, and ‘PREFIX/lib’ (normally ‘/usr/local/lib’).

For example,

foo : foo.c -lcurses
cc $^ -o $@

would cause the command ‘cc foo.c /usr/lib/libcurses.a -o foo’ to be
executed when ‘foo’ is older than ‘foo.c’ or than
‘/usr/lib/libcurses.a’.

1.34 make.guide/Phony Targets

Phony Targets
=============

A phony target is one that is not really the name of a file. It is
just a name for some commands to be executed when you make an explicit
request. There are two reasons to use a phony target: to avoid a
conflict with a file of the same name, and to improve performance.

If you write a rule whose commands will not create the target file,
the commands will be executed every time the target comes up for
remaking. Here is an example:

clean:
rm *.o temp

Because the ‘rm’ command does not create a file named ‘clean’, probably

gnu:guide/make 38 / 206

no such file will ever exist. Therefore, the ‘rm’ command will be
executed every time you say ‘make clean’.

The phony target will cease to work if anything ever does create a
file named ‘clean’ in this directory. Since it has no dependencies, the
file ‘clean’ would inevitably be considered up to date, and its
commands would not be executed. To avoid this problem, you can
explicitly declare the target to be phony, using the special target
‘.PHONY’ (see

Special Built-in Target Names
) as follows:

.PHONY : clean

Once this is done, ‘make clean’ will run the commands regardless of
whether there is a file named ‘clean’.

Since it knows that phony targets do not name actual files that
could be remade from other files, ‘make’ skips the implicit rule search
for phony targets (see

Implicit Rules
). This is why declaring a target

phony is good for performance, even if you are not worried about the
actual file existing.

Thus, you first write the line that states that ‘clean’ is a phony
target, then you write the rule, like this:

.PHONY: clean
clean:

rm *.o temp

A phony target should not be a dependency of a real target file; if
it is, its commands are run every time ‘make’ goes to update that file.
As long as a phony target is never a dependency of a real target, the
phony target commands will be executed only when the phony target is a
specified goal (see

Arguments to Specify the Goals
).

Phony targets can have dependencies. When one directory contains
multiple programs, it is most convenient to describe all of the
programs in one makefile ‘./Makefile’. Since the target remade by
default will be the first one in the makefile, it is common to make
this a phony target named ‘all’ and give it, as dependencies, all the
individual programs. For example:

all : prog1 prog2 prog3
.PHONY : all

prog1 : prog1.o utils.o
cc -o prog1 prog1.o utils.o

prog2 : prog2.o
cc -o prog2 prog2.o

prog3 : prog3.o sort.o utils.o

gnu:guide/make 39 / 206

cc -o prog3 prog3.o sort.o utils.o

Now you can say just ‘make’ to remake all three programs, or specify as
arguments the ones to remake (as in ‘make prog1 prog3’).

When one phony target is a dependency of another, it serves as a
subroutine of the other. For example, here ‘make cleanall’ will delete
the object files, the difference files, and the file ‘program’:

.PHONY: cleanall cleanobj cleandiff

cleanall : cleanobj cleandiff
rm program

cleanobj :
rm *.o

cleandiff :
rm *.diff

1.35 make.guide/Force Targets

Rules without Commands or Dependencies
======================================

If a rule has no dependencies or commands, and the target of the rule
is a nonexistent file, then ‘make’ imagines this target to have been
updated whenever its rule is run. This implies that all targets
depending on this one will always have their commands run.

An example will illustrate this:

clean: FORCE
rm $(objects)

FORCE:

Here the target ‘FORCE’ satisfies the special conditions, so the
target ‘clean’ that depends on it is forced to run its commands. There
is nothing special about the name ‘FORCE’, but that is one name
commonly used this way.

As you can see, using ‘FORCE’ this way has the same results as using
‘.PHONY: clean’.

Using ‘.PHONY’ is more explicit and more efficient. However, other
versions of ‘make’ do not support ‘.PHONY’; thus ‘FORCE’ appears in
many makefiles. See

Phony Targets
.

gnu:guide/make 40 / 206

1.36 make.guide/Empty Targets

Empty Target Files to Record Events
===================================

The "empty target" is a variant of the phony target; it is used to
hold commands for an action that you request explicitly from time to
time. Unlike a phony target, this target file can really exist; but
the file’s contents do not matter, and usually are empty.

The purpose of the empty target file is to record, with its
last-modification time, when the rule’s commands were last executed. It
does so because one of the commands is a ‘touch’ command to update the
target file.

The empty target file must have some dependencies. When you ask to
remake the empty target, the commands are executed if any dependency is
more recent than the target; in other words, if a dependency has
changed since the last time you remade the target. Here is an example:

print: foo.c bar.c
lpr -p $?
touch print

With this rule, ‘make print’ will execute the ‘lpr’ command if either
source file has changed since the last ‘make print’. The automatic
variable ‘$?’ is used to print only those files that have changed (see

Automatic Variables
).

1.37 make.guide/Special Targets

Special Built-in Target Names
=============================

Certain names have special meanings if they appear as targets.

‘.PHONY’
The dependencies of the special target ‘.PHONY’ are considered to
be phony targets. When it is time to consider such a target,
‘make’ will run its commands unconditionally, regardless of
whether a file with that name exists or what its last-modification
time is. See

Phony Targets
.

‘.SUFFIXES’
The dependencies of the special target ‘.SUFFIXES’ are the list of
suffixes to be used in checking for suffix rules. See

Old-Fashioned Suffix Rules

gnu:guide/make 41 / 206

.

‘.DEFAULT’
The commands specified for ‘.DEFAULT’ are used for any target for
which no rules are found (either explicit rules or implicit rules).
See

Last Resort
. If ‘.DEFAULT’ commands are specified, every file

mentioned as a dependency, but not as a target in a rule, will have
these commands executed on its behalf. See

Implicit Rule Search Algorithm
.

‘.PRECIOUS’
The targets which ‘.PRECIOUS’ depends on are given the following
special treatment: if ‘make’ is killed or interrupted during the
execution of their commands, the target is not deleted. See

Interrupting or Killing ‘make’
. Also, if the target is an

intermediate file, it will not be deleted after it is no longer
needed, as is normally done. See

Chains of Implicit Rules
.

You can also list the target pattern of an implicit rule (such as
‘%.o’) as a dependency file of the special target ‘.PRECIOUS’ to
preserve intermediate files created by rules whose target patterns
match that file’s name.

‘.IGNORE’
If you specify dependencies for ‘.IGNORE’, then ‘make’ will ignore
errors in execution of the commands run for those particular
files. The commands for ‘.IGNORE’ are not meaningful.

If mentioned as a target with no dependencies, ‘.IGNORE’ says to
ignore errors in execution of commands for all files. This usage
of ‘.IGNORE’ is supported only for historical compatibility. Since
this affects every command in the makefile, it is not very useful;
we recommend you use the more selective ways to ignore errors in
specific commands. See

Errors in Commands
.

‘.SILENT’
If you specify dependencies for ‘.SILENT’, then ‘make’ will not
the print commands to remake those particular files before
executing them. The commands for ‘.SILENT’ are not meaningful.

If mentioned as a target with no dependencies, ‘.SILENT’ says not
to print any commands before executing them. This usage of
‘.SILENT’ is supported only for historical compatibility. We
recommend you use the more selective ways to silence specific
commands. See

Command Echoing
. If you want to silence all

gnu:guide/make 42 / 206

commands for a particular run of ‘make’, use the ‘-s’ or
‘--silent’ option (see

Options Summary
).

‘.EXPORT_ALL_VARIABLES’
Simply by being mentioned as a target, this tells ‘make’ to export
all variables to child processes by default. See

Communicating Variables to a Sub-‘make’
.

Any defined implicit rule suffix also counts as a special target if
it appears as a target, and so does the concatenation of two suffixes,
such as ‘.c.o’. These targets are suffix rules, an obsolete way of
defining implicit rules (but a way still widely used). In principle,
any target name could be special in this way if you break it in two and
add both pieces to the suffix list. In practice, suffixes normally
begin with ‘.’, so these special target names also begin with ‘.’. See

Old-Fashioned Suffix Rules
.

1.38 make.guide/Multiple Targets

Multiple Targets in a Rule
==========================

A rule with multiple targets is equivalent to writing many rules,
each with one target, and all identical aside from that. The same
commands apply to all the targets, but their effects may vary because
you can substitute the actual target name into the command using ‘$@’.
The rule contributes the same dependencies to all the targets also.

This is useful in two cases.

* You want just dependencies, no commands. For example:

kbd.o command.o files.o: command.h

gives an additional dependency to each of the three object files
mentioned.

* Similar commands work for all the targets. The commands do not
need to be absolutely identical, since the automatic variable ‘$@’
can be used to substitute the particular target to be remade into
the commands (see

Automatic Variables
). For example:

bigoutput littleoutput : text.g
generate text.g -$(subst output,,$@) > $@

gnu:guide/make 43 / 206

is equivalent to

bigoutput : text.g
generate text.g -big > bigoutput

littleoutput : text.g
generate text.g -little > littleoutput

Here we assume the hypothetical program ‘generate’ makes two types
of output, one if given ‘-big’ and one if given ‘-little’. See

Functions for String Substitution and Analysis
, for an explanation

of the ‘subst’ function.

Suppose you would like to vary the dependencies according to the
target, much as the variable ‘$@’ allows you to vary the commands. You
cannot do this with multiple targets in an ordinary rule, but you can
do it with a "static pattern rule". See

Static Pattern Rules
.

1.39 make.guide/Multiple Rules

Multiple Rules for One Target
=============================

One file can be the target of several rules. All the dependencies
mentioned in all the rules are merged into one list of dependencies for
the target. If the target is older than any dependency from any rule,
the commands are executed.

There can only be one set of commands to be executed for a file. If
more than one rule gives commands for the same file, ‘make’ uses the
last set given and prints an error message. (As a special case, if the
file’s name begins with a dot, no error message is printed. This odd
behavior is only for compatibility with other implementations of
‘make’.) There is no reason to write your makefiles this way; that is
why ‘make’ gives you an error message.

An extra rule with just dependencies can be used to give a few extra
dependencies to many files at once. For example, one usually has a
variable named ‘objects’ containing a list of all the compiler output
files in the system being made. An easy way to say that all of them
must be recompiled if ‘config.h’ changes is to write the following:

objects = foo.o bar.o
foo.o : defs.h
bar.o : defs.h test.h
$(objects) : config.h

This could be inserted or taken out without changing the rules that
really specify how to make the object files, making it a convenient
form to use if you wish to add the additional dependency intermittently.

gnu:guide/make 44 / 206

Another wrinkle is that the additional dependencies could be
specified with a variable that you set with a command argument to ‘make’
(see

Overriding Variables
). For example,

extradeps=
$(objects) : $(extradeps)

means that the command ‘make extradeps=foo.h’ will consider ‘foo.h’ as
a dependency of each object file, but plain ‘make’ will not.

If none of the explicit rules for a target has commands, then ‘make’
searches for an applicable implicit rule to find some commands see

Using Implicit Rules
).

1.40 make.guide/Static Pattern

Static Pattern Rules
====================

"Static pattern rules" are rules which specify multiple targets and
construct the dependency names for each target based on the target name.
They are more general than ordinary rules with multiple targets because
the targets do not have to have identical dependencies. Their
dependencies must be *analogous*, but not necessarily *identical*.

Static Usage
The syntax of static pattern rules.

Static versus Implicit
When are they better than implicit rules?

1.41 make.guide/Static Usage

Syntax of Static Pattern Rules

Here is the syntax of a static pattern rule:

TARGETS ...: TARGET-PATTERN: DEP-PATTERNS ...
COMMANDS
...

gnu:guide/make 45 / 206

The TARGETS list specifies the targets that the rule applies to. The
targets can contain wildcard characters, just like the targets of
ordinary rules (see

Using Wildcard Characters in File Names
).

The TARGET-PATTERN and DEP-PATTERNS say how to compute the
dependencies of each target. Each target is matched against the
TARGET-PATTERN to extract a part of the target name, called the "stem".
This stem is substituted into each of the DEP-PATTERNS to make the
dependency names (one from each DEP-PATTERN).

Each pattern normally contains the character ‘%’ just once. When the
TARGET-PATTERN matches a target, the ‘%’ can match any part of the
target name; this part is called the "stem". The rest of the pattern
must match exactly. For example, the target ‘foo.o’ matches the
pattern ‘%.o’, with ‘foo’ as the stem. The targets ‘foo.c’ and
‘foo.out’ do not match that pattern.

The dependency names for each target are made by substituting the
stem for the ‘%’ in each dependency pattern. For example, if one
dependency pattern is ‘%.c’, then substitution of the stem ‘foo’ gives
the dependency name ‘foo.c’. It is legitimate to write a dependency
pattern that does not contain ‘%’; then this dependency is the same for
all targets.

‘%’ characters in pattern rules can be quoted with preceding
backslashes (‘\’). Backslashes that would otherwise quote ‘%’
characters can be quoted with more backslashes. Backslashes that quote
‘%’ characters or other backslashes are removed from the pattern before
it is compared to file names or has a stem substituted into it.
Backslashes that are not in danger of quoting ‘%’ characters go
unmolested. For example, the pattern ‘the\%weird\%pattern\’ has
‘the%weird\’ preceding the operative ‘%’ character, and ‘pattern\’
following it. The final two backslashes are left alone because they
cannot affect any ‘%’ character.

Here is an example, which compiles each of ‘foo.o’ and ‘bar.o’ from
the corresponding ‘.c’ file:

objects = foo.o bar.o

$(objects): %.o: %.c
$(CC) -c $(CFLAGS) $< -o $@

Here ‘$<’ is the automatic variable that holds the name of the
dependency and ‘$@’ is the automatic variable that holds the name of
the target; see See

Automatic Variables
.

Each target specified must match the target pattern; a warning is
issued for each target that does not. If you have a list of files,
only some of which will match the pattern, you can use the ‘filter’
function to remove nonmatching file names (see

gnu:guide/make 46 / 206

Functions for String Substitution and Analysis
):

files = foo.elc bar.o lose.o

$(filter %.o,$(files)): %.o: %.c
$(CC) -c $(CFLAGS) $< -o $@

$(filter %.elc,$(files)): %.elc: %.el
emacs -f batch-byte-compile $<

In this example the result of ‘$(filter %.o,$(files))’ is ‘bar.o
lose.o’, and the first static pattern rule causes each of these object
files to be updated by compiling the corresponding C source file. The
result of ‘$(filter %.elc,$(files))’ is ‘foo.elc’, so that file is made
from ‘foo.el’.

Another example shows how to use ‘$*’ in static pattern rules:

bigoutput littleoutput : %output : text.g
generate text.g -$* > $@

When the ‘generate’ command is run, ‘$*’ will expand to the stem,
either ‘big’ or ‘little’.

1.42 make.guide/Static versus Implicit

Static Pattern Rules versus Implicit Rules
--

A static pattern rule has much in common with an implicit rule
defined as a pattern rule (see

Defining and Redefining Pattern Rules
).

Both have a pattern for the target and patterns for constructing the
names of dependencies. The difference is in how ‘make’ decides *when*
the rule applies.

An implicit rule *can* apply to any target that matches its pattern,
but it *does* apply only when the target has no commands otherwise
specified, and only when the dependencies can be found. If more than
one implicit rule appears applicable, only one applies; the choice
depends on the order of rules.

By contrast, a static pattern rule applies to the precise list of
targets that you specify in the rule. It cannot apply to any other
target and it invariably does apply to each of the targets specified.
If two conflicting rules apply, and both have commands, that’s an error.

The static pattern rule can be better than an implicit rule for these
reasons:

* You may wish to override the usual implicit rule for a few files
whose names cannot be categorized syntactically but can be given

gnu:guide/make 47 / 206

in an explicit list.

* If you cannot be sure of the precise contents of the directories
you are using, you may not be sure which other irrelevant files
might lead ‘make’ to use the wrong implicit rule. The choice
might depend on the order in which the implicit rule search is
done. With static pattern rules, there is no uncertainty: each
rule applies to precisely the targets specified.

1.43 make.guide/Double-Colon

Double-Colon Rules
==================

"Double-colon" rules are rules written with ‘::’ instead of ‘:’
after the target names. They are handled differently from ordinary
rules when the same target appears in more than one rule.

When a target appears in multiple rules, all the rules must be the
same type: all ordinary, or all double-colon. If they are
double-colon, each of them is independent of the others. Each
double-colon rule’s commands are executed if the target is older than
any dependencies of that rule. This can result in executing none, any,
or all of the double-colon rules.

Double-colon rules with the same target are in fact completely
separate from one another. Each double-colon rule is processed
individually, just as rules with different targets are processed.

The double-colon rules for a target are executed in the order they
appear in the makefile. However, the cases where double-colon rules
really make sense are those where the order of executing the commands
would not matter.

Double-colon rules are somewhat obscure and not often very useful;
they provide a mechanism for cases in which the method used to update a
target differs depending on which dependency files caused the update,
and such cases are rare.

Each double-colon rule should specify commands; if it does not, an
implicit rule will be used if one applies. See

Using Implicit Rules
.

1.44 make.guide/Automatic Dependencies

Generating Dependencies Automatically
=====================================

gnu:guide/make 48 / 206

In the makefile for a program, many of the rules you need to write
often say only that some object file depends on some header file. For
example, if ‘main.c’ uses ‘defs.h’ via an ‘#include’, you would write:

main.o: defs.h

You need this rule so that ‘make’ knows that it must remake ‘main.o’
whenever ‘defs.h’ changes. You can see that for a large program you
would have to write dozens of such rules in your makefile. And, you
must always be very careful to update the makefile every time you add
or remove an ‘#include’.

To avoid this hassle, most modern C compilers can write these rules
for you, by looking at the ‘#include’ lines in the source files.
Usually this is done with the ‘-M’ option to the compiler. For
example, the command:

cc -M main.c

generates the output:

main.o : main.c defs.h

Thus you no longer have to write all those rules yourself. The
compiler will do it for you.

Note that such a dependency constitutes mentioning ‘main.o’ in a
makefile, so it can never be considered an intermediate file by implicit
rule search. This means that ‘make’ won’t ever remove the file after
using it; see

Chains of Implicit Rules
.

With old ‘make’ programs, it was traditional practice to use this
compiler feature to generate dependencies on demand with a command like
‘make depend’. That command would create a file ‘depend’ containing
all the automatically-generated dependencies; then the makefile could
use ‘include’ to read them in (see

Include
).

In GNU ‘make’, the feature of remaking makefiles makes this practice
obsolete--you need never tell ‘make’ explicitly to regenerate the
dependencies, because it always regenerates any makefile that is out of
date. See

Remaking Makefiles
.

The practice we recommend for automatic dependency generation is to
have one makefile corresponding to each source file. For each source
file ‘NAME.c’ there is a makefile ‘NAME.d’ which lists what files the
object file ‘NAME.o’ depends on. That way only the source files that
have changed need to be rescanned to produce the new dependencies.

Here is the pattern rule to generate a file of dependencies (i.e., a
makefile) called ‘NAME.d’ from a C source file called ‘NAME.c’:

gnu:guide/make 49 / 206

%.d: %.c
$(SHELL) -ec ’$(CC) -M $(CPPFLAGS) $< \

| sed ’\’’s/$*\.o[:]*/& $@/g’\’’ > $@’

See
Pattern Rules
, for information on defining pattern rules. The ‘-e’

flag to the shell makes it exit immediately if the ‘$(CC)’ command
fails (exits with a nonzero status). Normally the shell exits with the
status of the last command in the pipeline (‘sed’ in this case), so
‘make’ would not notice a nonzero status from the compiler.

With the GNU C compiler, you may wish to use the ‘-MM’ flag instead
of ‘-M’. This omits dependencies on system header files. See
Options Controlling the Preprocessor, for details.

The purpose of the ‘sed’ command is to translate (for example):

main.o : main.c defs.h

into:

main.o main.d : main.c defs.h

This makes each ‘.d’ file depend on all the source and header files
that the corresponding ‘.o’ file depends on. ‘make’ then knows it must
regenerate the dependencies whenever any of the source or header files
changes.

Once you’ve defined the rule to remake the ‘.d’ files, you then use
the ‘include’ directive to read them all in. See

Include
. For example:

sources = foo.c bar.c

include $(sources:.c=.d)

(This example uses a substitution variable reference to translate the
list of source files ‘foo.c bar.c’ into a list of dependency makefiles,
‘foo.d bar.d’. See

Substitution Refs
, for full information on

substitution references.) Since the ‘.d’ files are makefiles like any
others, ‘make’ will remake them as necessary with no further work from
you. See

Remaking Makefiles
.

1.45 make.guide/Commands

gnu:guide/make 50 / 206

Writing the Commands in Rules

The commands of a rule consist of shell command lines to be executed
one by one. Each command line must start with a tab, except that the
first command line may be attached to the target-and-dependencies line
with a semicolon in between. Blank lines and lines of just comments
may appear among the command lines; they are ignored. (But beware, an
apparently "blank" line that begins with a tab is *not* blank! It is an
empty command; see

Empty Commands
.)

Users use many different shell programs, but commands in makefiles
are always interpreted by ‘/bin/sh’ unless the makefile specifies
otherwise. See

Command Execution
.

The shell that is in use determines whether comments can be written
on command lines, and what syntax they use. When the shell is
‘/bin/sh’, a ‘#’ starts a comment that extends to the end of the line.
The ‘#’ does not have to be at the beginning of a line. Text on a line
before a ‘#’ is not part of the comment.

Echoing
How to control when commands are echoed.

Execution
How commands are executed.

Parallel
How commands can be executed in parallel.

Errors
What happens after a command execution ←↩

error.

Interrupts
What happens when a command is interrupted.

Recursion
Invoking ‘make’ from makefiles.

Sequences
Defining canned sequences of commands.

Empty Commands
Defining useful, do-nothing commands.

gnu:guide/make 51 / 206

1.46 make.guide/Echoing

Command Echoing
===============

Normally ‘make’ prints each command line before it is executed. We
call this "echoing" because it gives the appearance that you are typing
the commands yourself.

When a line starts with ‘@’, the echoing of that line is suppressed.
The ‘@’ is discarded before the command is passed to the shell.
Typically you would use this for a command whose only effect is to print
something, such as an ‘echo’ command to indicate progress through the
makefile:

@echo About to make distribution files

When ‘make’ is given the flag ‘-n’ or ‘--just-print’, echoing is all
that happens, no execution. See

Summary of Options
. In this case and

only this case, even the commands starting with ‘@’ are printed. This
flag is useful for finding out which commands ‘make’ thinks are
necessary without actually doing them.

The ‘-s’ or ‘--silent’ flag to ‘make’ prevents all echoing, as if
all commands started with ‘@’. A rule in the makefile for the special
target ‘.SILENT’ without dependencies has the same effect (see

Special Built-in Target Names
). ‘.SILENT’ is essentially obsolete

since ‘@’ is more flexible.

1.47 make.guide/Execution

Command Execution
=================

When it is time to execute commands to update a target, they are
executed by making a new subshell for each line. (In practice, ‘make’
may take shortcuts that do not affect the results.)

Please note: this implies that shell commands such as ‘cd’ that
set variables local to each process will not affect the following
command lines. If you want to use ‘cd’ to affect the next command, put
the two on a single line with a semicolon between them. Then ‘make’
will consider them a single command and pass them, together, to a shell
which will execute them in sequence. For example:

foo : bar/lose
cd bar; gobble lose > ../foo

gnu:guide/make 52 / 206

If you would like to split a single shell command into multiple
lines of text, you must use a backslash at the end of all but the last
subline. Such a sequence of lines is combined into a single line, by
deleting the backslash-newline sequences, before passing it to the
shell. Thus, the following is equivalent to the preceding example:

foo : bar/lose
cd bar; \
gobble lose > ../foo

The program used as the shell is taken from the variable ‘SHELL’.
By default, the program ‘/bin/sh’ is used.

Unlike most variables, the variable ‘SHELL’ is never set from the
environment. This is because the ‘SHELL’ environment variable is used
to specify your personal choice of shell program for interactive use.
It would be very bad for personal choices like this to affect the
functioning of makefiles. See

Variables from the Environment
.

1.48 make.guide/Parallel

Parallel Execution
==================

GNU ‘make’ knows how to execute several commands at once. Normally,
‘make’ will execute only one command at a time, waiting for it to
finish before executing the next. However, the ‘-j’ or ‘--jobs’ option
tells ‘make’ to execute many commands simultaneously.

If the ‘-j’ option is followed by an integer, this is the number of
commands to execute at once; this is called the number of "job slots".
If there is nothing looking like an integer after the ‘-j’ option,
there is no limit on the number of job slots. The default number of job
slots is one, which means serial execution (one thing at a time).

One unpleasant consequence of running several commands
simultaneously is that output from all of the commands comes when the
commands send it, so messages from different commands may be
interspersed.

Another problem is that two processes cannot both take input from the
same device; so to make sure that only one command tries to take input
from the terminal at once, ‘make’ will invalidate the standard input
streams of all but one running command. This means that attempting to
read from standard input will usually be a fatal error (a ‘Broken pipe’
signal) for most child processes if there are several.

It is unpredictable which command will have a valid standard input
stream (which will come from the terminal, or wherever you redirect the
standard input of ‘make’). The first command run will always get it
first, and the first command started after that one finishes will get

gnu:guide/make 53 / 206

it next, and so on.

We will change how this aspect of ‘make’ works if we find a better
alternative. In the mean time, you should not rely on any command using
standard input at all if you are using the parallel execution feature;
but if you are not using this feature, then standard input works
normally in all commands.

If a command fails (is killed by a signal or exits with a nonzero
status), and errors are not ignored for that command (see

Errors in Commands
), the remaining command lines to remake the same

target will not be run. If a command fails and the ‘-k’ or
‘--keep-going’ option was not given (see

Summary of Options
), ‘make’

aborts execution. If make terminates for any reason (including a
signal) with child processes running, it waits for them to finish
before actually exiting.

When the system is heavily loaded, you will probably want to run
fewer jobs than when it is lightly loaded. You can use the ‘-l’ option
to tell ‘make’ to limit the number of jobs to run at once, based on the
load average. The ‘-l’ or ‘--max-load’ option is followed by a
floating-point number. For example,

-l 2.5

will not let ‘make’ start more than one job if the load average is
above 2.5. The ‘-l’ option with no following number removes the load
limit, if one was given with a previous ‘-l’ option.

More precisely, when ‘make’ goes to start up a job, and it already
has at least one job running, it checks the current load average; if it
is not lower than the limit given with ‘-l’, ‘make’ waits until the load
average goes below that limit, or until all the other jobs finish.

By default, there is no load limit.

1.49 make.guide/Errors

Errors in Commands
==================

After each shell command returns, ‘make’ looks at its exit status.
If the command completed successfully, the next command line is executed
in a new shell; after the last command line is finished, the rule is
finished.

If there is an error (the exit status is nonzero), ‘make’ gives up on
the current rule, and perhaps on all rules.

gnu:guide/make 54 / 206

Sometimes the failure of a certain command does not indicate a
problem. For example, you may use the ‘mkdir’ command to ensure that a
directory exists. If the directory already exists, ‘mkdir’ will report
an error, but you probably want ‘make’ to continue regardless.

To ignore errors in a command line, write a ‘-’ at the beginning of
the line’s text (after the initial tab). The ‘-’ is discarded before
the command is passed to the shell for execution.

For example,

clean:
-rm -f *.o

This causes ‘rm’ to continue even if it is unable to remove a file.

When you run ‘make’ with the ‘-i’ or ‘--ignore-errors’ flag, errors
are ignored in all commands of all rules. A rule in the makefile for
the special target ‘.IGNORE’ has the same effect, if there are no
dependencies. These ways of ignoring errors are obsolete because ‘-’
is more flexible.

When errors are to be ignored, because of either a ‘-’ or the ‘-i’
flag, ‘make’ treats an error return just like success, except that it
prints out a message that tells you the status code the command exited
with, and says that the error has been ignored.

When an error happens that ‘make’ has not been told to ignore, it
implies that the current target cannot be correctly remade, and neither
can any other that depends on it either directly or indirectly. No
further commands will be executed for these targets, since their
preconditions have not been achieved.

Normally ‘make’ gives up immediately in this circumstance, returning
a nonzero status. However, if the ‘-k’ or ‘--keep-going’ flag is
specified, ‘make’ continues to consider the other dependencies of the
pending targets, remaking them if necessary, before it gives up and
returns nonzero status. For example, after an error in compiling one
object file, ‘make -k’ will continue compiling other object files even
though it already knows that linking them will be impossible. See

Summary of Options
.

The usual behavior assumes that your purpose is to get the specified
targets up to date; once ‘make’ learns that this is impossible, it
might as well report the failure immediately. The ‘-k’ option says
that the real purpose is to test as many of the changes made in the
program as possible, perhaps to find several independent problems so
that you can correct them all before the next attempt to compile. This
is why Emacs’ ‘compile’ command passes the ‘-k’ flag by default.

Usually when a command fails, if it has changed the target file at
all, the file is corrupted and cannot be used--or at least it is not
completely updated. Yet the file’s timestamp says that it is now up to
date, so the next time ‘make’ runs, it will not try to update that
file. The situation is just the same as when the command is killed by a

gnu:guide/make 55 / 206

signal; see
Interrupts
. So generally the right thing to do is to

delete the target file if the command fails after beginning to change
the file. ‘make’ will do this if ‘.DELETE_ON_ERROR’ appears as a
target. This is almost always what you want ‘make’ to do, but it is
not historical practice; so for compatibility, you must explicitly
request it.

1.50 make.guide/Interrupts

Interrupting or Killing ‘make’
==============================

If ‘make’ gets a fatal signal while a command is executing, it may
delete the target file that the command was supposed to update. This is
done if the target file’s last-modification time has changed since
‘make’ first checked it.

The purpose of deleting the target is to make sure that it is remade
from scratch when ‘make’ is next run. Why is this? Suppose you type
‘Ctrl-c’ while a compiler is running, and it has begun to write an
object file ‘foo.o’. The ‘Ctrl-c’ kills the compiler, resulting in an
incomplete file whose last-modification time is newer than the source
file ‘foo.c’. But ‘make’ also receives the ‘Ctrl-c’ signal and deletes
this incomplete file. If ‘make’ did not do this, the next invocation
of ‘make’ would think that ‘foo.o’ did not require updating--resulting
in a strange error message from the linker when it tries to link an
object file half of which is missing.

You can prevent the deletion of a target file in this way by making
the special target ‘.PRECIOUS’ depend on it. Before remaking a target,
‘make’ checks to see whether it appears on the dependencies of
‘.PRECIOUS’, and thereby decides whether the target should be deleted
if a signal happens. Some reasons why you might do this are that the
target is updated in some atomic fashion, or exists only to record a
modification-time (its contents do not matter), or must exist at all
times to prevent other sorts of trouble.

1.51 make.guide/Recursion

Recursive Use of ‘make’
=======================

Recursive use of ‘make’ means using ‘make’ as a command in a
makefile. This technique is useful when you want separate makefiles for
various subsystems that compose a larger system. For example, suppose
you have a subdirectory ‘subdir’ which has its own makefile, and you
would like the containing directory’s makefile to run ‘make’ on the

gnu:guide/make 56 / 206

subdirectory. You can do it by writing this:

subsystem:
cd subdir; $(MAKE)

or, equivalently, this (see
Summary of Options
):

subsystem:
$(MAKE) -C subdir

You can write recursive ‘make’ commands just by copying this example,
but there are many things to know about how they work and why, and about
how the sub-‘make’ relates to the top-level ‘make’.

MAKE Variable
The special effects of using ‘$(MAKE)’.

Variables-Recursion
How to communicate variables to a sub-‘make’.

Options-Recursion
How to communicate options to a sub-‘make’.

-w Option
How the ‘-w’ or ‘--print-directory’ option

helps debug use of recursive ‘make’ commands.

1.52 make.guide/MAKE Variable

How the ‘MAKE’ Variable Works

Recursive ‘make’ commands should always use the variable ‘MAKE’, not
the explicit command name ‘make’, as shown here:

subsystem:
cd subdir; $(MAKE)

The value of this variable is the file name with which ‘make’ was
invoked. If this file name was ‘/bin/make’, then the command executed
is ‘cd subdir; /bin/make’. If you use a special version of ‘make’ to
run the top-level makefile, the same special version will be executed
for recursive invocations.

As a special feature, using the variable ‘MAKE’ in the commands of a
rule alters the effects of the ‘-t’ (‘--touch’), ‘-n’ (‘--just-print’),
or ‘-q’ (‘--question’) option. Using the ‘MAKE’ variable has the same
effect as using a ‘+’ character at the beginning of the command line.
See

gnu:guide/make 57 / 206

Instead of Executing the Commands
.

Consider the command ‘make -t’ in the above example. (The ‘-t’
option marks targets as up to date without actually running any
commands; see See

Instead of Execution
.) Following the usual

definition of ‘-t’, a ‘make -t’ command in the example would create a
file named ‘subsystem’ and do nothing else. What you really want it to
do is run ‘cd subdir; make -t’; but that would require executing the
command, and ‘-t’ says not to execute commands.

The special feature makes this do what you want: whenever a command
line of a rule contains the variable ‘MAKE’, the flags ‘-t’, ‘-n’ and
‘-q’ do not apply to that line. Command lines containing ‘MAKE’ are
executed normally despite the presence of a flag that causes most
commands not to be run. The usual ‘MAKEFLAGS’ mechanism passes the
flags to the sub-‘make’ (see

Communicating Options to a Sub-‘make’
), so

your request to touch the files, or print the commands, is propagated
to the subsystem.

1.53 make.guide/Variables-Recursion

Communicating Variables to a Sub-‘make’

Variable values of the top-level ‘make’ can be passed to the
sub-‘make’ through the environment by explicit request. These
variables are defined in the sub-‘make’ as defaults, but do not
override what is specified in the makefile used by the sub-‘make’
makefile unless you use the ‘-e’ switch (see

Summary of Options
).

To pass down, or "export", a variable, ‘make’ adds the variable and
its value to the environment for running each command. The sub-‘make’,
in turn, uses the environment to initialize its table of variable
values. See

Variables from the Environment
.

Except by explicit request, ‘make’ exports a variable only if it is
either defined in the environment initially or set on the command line,
and if its name consists only of letters, numbers, and underscores.
Some shells cannot cope with environment variable names consisting of
characters other than letters, numbers, and underscores.

The special variables ‘SHELL’ and ‘MAKEFLAGS’ are always exported
(unless you unexport them). ‘MAKEFILES’ is exported if you set it to
anything.

gnu:guide/make 58 / 206

‘make’ automatically passes down variable values that were defined
on the command line, by putting them in the ‘MAKEFLAGS’ variable. See

Options-Recursion
.

Variables are *not* normally passed down if they were created by
default by ‘make’ (see

Variables Used by Implicit Rules
). The

sub-‘make’ will define these for itself.

If you want to export specific variables to a sub-‘make’, use the
‘export’ directive, like this:

export VARIABLE ...

If you want to *prevent* a variable from being exported, use the
‘unexport’ directive, like this:

unexport VARIABLE ...

As a convenience, you can define a variable and export it at the same
time by doing:

export VARIABLE = value

has the same result as:

VARIABLE = value
export VARIABLE

and

export VARIABLE := value

has the same result as:

VARIABLE := value
export VARIABLE

Likewise,

export VARIABLE += value

is just like:

VARIABLE += value
export VARIABLE

See
Appending More Text to Variables
.

You may notice that the ‘export’ and ‘unexport’ directives work in
‘make’ in the same way they work in the shell, ‘sh’.

gnu:guide/make 59 / 206

If you want all variables to be exported by default, you can use
‘export’ by itself:

export

This tells ‘make’ that variables which are not explicitly mentioned in
an ‘export’ or ‘unexport’ directive should be exported. Any variable
given in an ‘unexport’ directive will still *not* be exported. If you
use ‘export’ by itself to export variables by default, variables whose
names contain characters other than alphanumerics and underscores will
not be exported unless specifically mentioned in an ‘export’ directive.

The behavior elicited by an ‘export’ directive by itself was the
default in older versions of GNU ‘make’. If your makefiles depend on
this behavior and you want to be compatible with old versions of
‘make’, you can write a rule for the special target
‘.EXPORT_ALL_VARIABLES’ instead of using the ‘export’ directive. This
will be ignored by old ‘make’s, while the ‘export’ directive will cause
a syntax error.

Likewise, you can use ‘unexport’ by itself to tell ‘make’ *not* to
export variables by default. Since this is the default behavior, you
would only need to do this if ‘export’ had been used by itself earlier
(in an included makefile, perhaps). You *cannot* use ‘export’ and
‘unexport’ by themselves to have variables exported for some commands
and not for others. The last ‘export’ or ‘unexport’ directive that
appears by itself determines the behavior for the entire run of ‘make’.

As a special feature, the variable ‘MAKELEVEL’ is changed when it is
passed down from level to level. This variable’s value is a string
which is the depth of the level as a decimal number. The value is ‘0’
for the top-level ‘make’; ‘1’ for a sub-‘make’, ‘2’ for a
sub-sub-‘make’, and so on. The incrementation happens when ‘make’ sets
up the environment for a command.

The main use of ‘MAKELEVEL’ is to test it in a conditional directive
(see

Conditional Parts of Makefiles
); this way you can write a makefile

that behaves one way if run recursively and another way if run directly
by you.

You can use the variable ‘MAKEFILES’ to cause all sub-‘make’
commands to use additional makefiles. The value of ‘MAKEFILES’ is a
whitespace-separated list of file names. This variable, if defined in
the outer-level makefile, is passed down through the environment; then
it serves as a list of extra makefiles for the sub-‘make’ to read
before the usual or specified ones. See

The Variable ‘MAKEFILES’
.

gnu:guide/make 60 / 206

1.54 make.guide/Options-Recursion

Communicating Options to a Sub-‘make’

Flags such as ‘-s’ and ‘-k’ are passed automatically to the
sub-‘make’ through the variable ‘MAKEFLAGS’. This variable is set up
automatically by ‘make’ to contain the flag letters that ‘make’
received. Thus, if you do ‘make -ks’ then ‘MAKEFLAGS’ gets the value
‘ks’.

As a consequence, every sub-‘make’ gets a value for ‘MAKEFLAGS’ in
its environment. In response, it takes the flags from that value and
processes them as if they had been given as arguments. See

Summary of Options
.

Likewise variables defined on the command line are passed to the
sub-‘make’ through ‘MAKEFLAGS’. Words in the value of ‘MAKEFLAGS’ that
contain ‘=’, ‘make’ treats as variable definitions just as if they
appeared on the command line. See

Overriding Variables
.

The options ‘-C’, ‘-f’, ‘-I’, ‘-o’, and ‘-W’ are not put into
‘MAKEFLAGS’; these options are not passed down.

The ‘-j’ option is a special case (see
Parallel Execution
). If you

set it to some numeric value, ‘-j 1’ is always put into ‘MAKEFLAGS’
instead of the value you specified. This is because if the ‘-j’ option
were passed down to sub-‘make’s, you would get many more jobs running
in parallel than you asked for. If you give ‘-j’ with no numeric
argument, meaning to run as many jobs as possible in parallel, this is
passed down, since multiple infinities are no more than one.

If you do not want to pass the other flags down, you must change the
value of ‘MAKEFLAGS’, like this:

MAKEFLAGS=
subsystem:

cd subdir; $(MAKE)

or like this:

subsystem:
cd subdir; $(MAKE) MAKEFLAGS=

The command line variable definitions really appear in the variable
‘MAKEOVERRIDES’, and ‘MAKEFLAGS’ contains a reference to this variable.
If you do want to pass flags down normally, but don’t want to pass
down the command line variable definitions, you can reset
‘MAKEOVERRIDES’ to empty, like this:

gnu:guide/make 61 / 206

MAKEOVERRIDES =

This is not usually useful to do. However, some systems have a small
fixed limit on the size of the environment, and putting so much
information in into the value of ‘MAKEFLAGS’ can exceed it. If you see
the error message ‘Arg list too long’, this may be the problem. (For
strict compliance with POSIX.2, changing ‘MAKEOVERRIDES’ does not
affect ‘MAKEFLAGS’ if the special target ‘.POSIX’ appears in the
makefile. You probably do not care about this.)

A similar variable ‘MFLAGS’ exists also, for historical
compatibility. It has the same value as ‘MAKEFLAGS’ except that it
does not contain the command line variable definitions, and it always
begins with a hyphen unless it is empty (‘MAKEFLAGS’ begins with a
hyphen only when it begins with an option that has no single-letter
version, such as ‘--warn-undefined-variables’). ‘MFLAGS’ was
traditionally used explicitly in the recursive ‘make’ command, like
this:

subsystem:
cd subdir; $(MAKE) $(MFLAGS)

but now ‘MAKEFLAGS’ makes this usage redundant. If you want your
makefiles to be compatible with old ‘make’ programs, use this
technique; it will work fine with more modern ‘make’ versions too.

The ‘MAKEFLAGS’ variable can also be useful if you want to have
certain options, such as ‘-k’ (see

Summary of Options
), set each time

you run ‘make’. You simply put a value for ‘MAKEFLAGS’ in your
environment. You can also set ‘MAKEFLAGS’ in a makefile, to specify
additional flags that should also be in effect for that makefile.
(Note that you cannot use ‘MFLAGS’ this way. That variable is set only
for compatibility; ‘make’ does not interpret a value you set for it in
any way.)

When ‘make’ interprets the value of ‘MAKEFLAGS’ (either from the
environment or from a makefile), it first prepends a hyphen if the value
does not already begin with one. Then it chops the value into words
separated by blanks, and parses these words as if they were options
given on the command line (except that ‘-C’, ‘-f’, ‘-h’, ‘-o’, ‘-W’,
and their long-named versions are ignored; and there is no error for an
invalid option).

If you do put ‘MAKEFLAGS’ in your environment, you should be sure not
to include any options that will drastically affect the actions of
‘make’ and undermine the purpose of makefiles and of ‘make’ itself.
For instance, the ‘-t’, ‘-n’, and ‘-q’ options, if put in one of these
variables, could have disastrous consequences and would certainly have
at least surprising and probably annoying effects.

gnu:guide/make 62 / 206

1.55 make.guide/-w Option

The ‘--print-directory’ Option

If you use several levels of recursive ‘make’ invocations, the ‘-w’
or ‘--print-directory’ option can make the output a lot easier to
understand by showing each directory as ‘make’ starts processing it and
as ‘make’ finishes processing it. For example, if ‘make -w’ is run in
the directory ‘/u/gnu/make’, ‘make’ will print a line of the form:

make: Entering directory ‘/u/gnu/make’.

before doing anything else, and a line of the form:

make: Leaving directory ‘/u/gnu/make’.

when processing is completed.

Normally, you do not need to specify this option because ‘make’ does
it for you: ‘-w’ is turned on automatically when you use the ‘-C’
option, and in sub-‘make’s. ‘make’ will not automatically turn on ‘-w’
if you also use ‘-s’, which says to be silent, or if you use
‘--no-print-directory’ to explicitly disable it.

1.56 make.guide/Sequences

Defining Canned Command Sequences
=================================

When the same sequence of commands is useful in making various
targets, you can define it as a canned sequence with the ‘define’
directive, and refer to the canned sequence from the rules for those
targets. The canned sequence is actually a variable, so the name must
not conflict with other variable names.

Here is an example of defining a canned sequence of commands:

define run-yacc
yacc $(firstword $^)
mv y.tab.c $@
endef

Here ‘run-yacc’ is the name of the variable being defined; ‘endef’
marks the end of the definition; the lines in between are the commands.
The ‘define’ directive does not expand variable references and
function calls in the canned sequence; the ‘$’ characters, parentheses,
variable names, and so on, all become part of the value of the variable
you are defining. See

Defining Variables Verbatim
, for a complete

explanation of ‘define’.

gnu:guide/make 63 / 206

The first command in this example runs Yacc on the first dependency
of whichever rule uses the canned sequence. The output file from Yacc
is always named ‘y.tab.c’. The second command moves the output to the
rule’s target file name.

To use the canned sequence, substitute the variable into the
commands of a rule. You can substitute it like any other variable (see

Basics of Variable References
). Because variables defined by ‘define’

are recursively expanded variables, all the variable references you
wrote inside the ‘define’ are expanded now. For example:

foo.c : foo.y
$(run-yacc)

‘foo.y’ will be substituted for the variable ‘$^’ when it occurs in
‘run-yacc’’s value, and ‘foo.c’ for ‘$@’.

This is a realistic example, but this particular one is not needed in
practice because ‘make’ has an implicit rule to figure out these
commands based on the file names involved (see

Using Implicit Rules
).

In command execution, each line of a canned sequence is treated just
as if the line appeared on its own in the rule, preceded by a tab. In
particular, ‘make’ invokes a separate subshell for each line. You can
use the special prefix characters that affect command lines (‘@’, ‘-’,
and ‘+’) on each line of a canned sequence. See

Writing the Commands in Rules
. For example, using this canned sequence:

define frobnicate
@echo "frobnicating target $@"
frob-step-1 $< -o $@-step-1
frob-step-2 $@-step-1 -o $@
endef

‘make’ will not echo the first line, the ‘echo’ command. But it *will*
echo the following two command lines.

On the other hand, prefix characters on the command line that refers
to a canned sequence apply to every line in the sequence. So the rule:

frob.out: frob.in
@$(frobnicate)

does not echo *any* commands. (See
Command Echoing
, for a full

explanation of ‘@’.)

gnu:guide/make 64 / 206

1.57 make.guide/Empty Commands

Using Empty Commands
====================

It is sometimes useful to define commands which do nothing. This is
done simply by giving a command that consists of nothing but
whitespace. For example:

target: ;

defines an empty command string for ‘target’. You could also use a
line beginning with a tab character to define an empty command string,
but this would be confusing because such a line looks empty.

You may be wondering why you would want to define a command string
that does nothing. The only reason this is useful is to prevent a
target from getting implicit commands (from implicit rules or the
‘.DEFAULT’ special target; see

Implicit Rules
and see

Defining Last-Resort Default Rules
).

You may be inclined to define empty command strings for targets that
are not actual files, but only exist so that their dependencies can be
remade. However, this is not the best way to do that, because the
dependencies may not be remade properly if the target file actually
does exist. See

Phony Targets
, for a better way to do this.

1.58 make.guide/Using Variables

How to Use Variables

A "variable" is a name defined in a makefile to represent a string
of text, called the variable’s "value". These values are substituted
by explicit request into targets, dependencies, commands, and other
parts of the makefile. (In some other versions of ‘make’, variables
are called "macros".)

Variables and functions in all parts of a makefile are expanded when
read, except for the shell commands in rules, the right-hand sides of
variable definitions using ‘=’, and the bodies of variable definitions
using the ‘define’ directive.

Variables can represent lists of file names, options to pass to
compilers, programs to run, directories to look in for source files,
directories to write output in, or anything else you can imagine.

gnu:guide/make 65 / 206

A variable name may be any sequence of characters not containing ‘:’,
‘#’, ‘=’, or leading or trailing whitespace. However, variable names
containing characters other than letters, numbers, and underscores
should be avoided, as they may be given special meanings in the future,
and with some shells they cannot be passed through the environment to a
sub-‘make’ (see

Communicating Variables to a Sub-‘make’
).

Variable names are case-sensitive. The names ‘foo’, ‘FOO’, and
‘Foo’ all refer to different variables.

It is traditional to use upper case letters in variable names, but we
recommend using lower case letters for variable names that serve
internal purposes in the makefile, and reserving upper case for
parameters that control implicit rules or for parameters that the user
should override with command options (see

Overriding Variables
).

A few variables have names that are a single punctuation character or
just a few characters. These are the "automatic variables", and they
have particular specialized uses. See

Automatic Variables
.

Reference
How to use the value of a variable.

Flavors
Variables come in two flavors.

Advanced
Advanced features for referencing a variable.

Values
All the ways variables get their values.

Setting
How to set a variable in the makefile.

Appending
How to append more text to the old value

of a variable.

Override Directive
How to set a variable in the makefile even if

the user has set it with a command argument.

Defining
An alternate way to set a variable

to a verbatim string.

Environment

gnu:guide/make 66 / 206

Variable values can come from the environment.

Automatic
Some special variables have predefined

meanings for use with implicit rules.

1.59 make.guide/Reference

Basics of Variable References
=============================

To substitute a variable’s value, write a dollar sign followed by
the name of the variable in parentheses or braces: either ‘$(foo)’ or
‘${foo}’ is a valid reference to the variable ‘foo’. This special
significance of ‘$’ is why you must write ‘$$’ to have the effect of a
single dollar sign in a file name or command.

Variable references can be used in any context: targets,
dependencies, commands, most directives, and new variable values. Here
is an example of a common case, where a variable holds the names of all
the object files in a program:

objects = program.o foo.o utils.o
program : $(objects)

cc -o program $(objects)

$(objects) : defs.h

Variable references work by strict textual substitution. Thus, the
rule

foo = c
prog.o : prog.$(foo)

(foo)(foo) -$(foo) prog.$(foo)

could be used to compile a C program ‘prog.c’. Since spaces before the
variable value are ignored in variable assignments, the value of ‘foo’
is precisely ‘c’. (Don’t actually write your makefiles this way!)

A dollar sign followed by a character other than a dollar sign,
open-parenthesis or open-brace treats that single character as the
variable name. Thus, you could reference the variable ‘x’ with ‘$x’.
However, this practice is strongly discouraged, except in the case of
the automatic variables (see

Automatic Variables
).

1.60 make.guide/Flavors

gnu:guide/make 67 / 206

The Two Flavors of Variables
============================

There are two ways that a variable in GNU ‘make’ can have a value;
we call them the two "flavors" of variables. The two flavors are
distinguished in how they are defined and in what they do when expanded.

The first flavor of variable is a "recursively expanded" variable.
Variables of this sort are defined by lines using ‘=’ (see

Setting Variables
) or by the ‘define’ directive (see

Defining Variables Verbatim
). The value you specify is installed

verbatim; if it contains references to other variables, these
references are expanded whenever this variable is substituted (in the
course of expanding some other string). When this happens, it is
called "recursive expansion".

For example,

foo = $(bar)
bar = $(ugh)
ugh = Huh?

all:;echo $(foo)

will echo ‘Huh?’: ‘$(foo)’ expands to ‘$(bar)’ which expands to
‘$(ugh)’ which finally expands to ‘Huh?’.

This flavor of variable is the only sort supported by other versions
of ‘make’. It has its advantages and its disadvantages. An advantage
(most would say) is that:

CFLAGS = $(include_dirs) -O
include_dirs = -Ifoo -Ibar

will do what was intended: when ‘CFLAGS’ is expanded in a command, it
will expand to ‘-Ifoo -Ibar -O’. A major disadvantage is that you
cannot append something on the end of a variable, as in

CFLAGS = $(CFLAGS) -O

because it will cause an infinite loop in the variable expansion.
(Actually ‘make’ detects the infinite loop and reports an error.)

Another disadvantage is that any functions (see

Functions for Transforming Text
) referenced in the definition will be

executed every time the variable is expanded. This makes ‘make’ run
slower; worse, it causes the ‘wildcard’ and ‘shell’ functions to give
unpredictable results because you cannot easily control when they are
called, or even how many times.

gnu:guide/make 68 / 206

To avoid all the problems and inconveniences of recursively expanded
variables, there is another flavor: simply expanded variables.

"Simply expanded variables" are defined by lines using ‘:=’ (see

Setting Variables
). The value of a simply expanded variable is scanned

once and for all, expanding any references to other variables and
functions, when the variable is defined. The actual value of the simply
expanded variable is the result of expanding the text that you write.
It does not contain any references to other variables; it contains their
values *as of the time this variable was defined*. Therefore,

x := foo
y := $(x) bar
x := later

is equivalent to

y := foo bar
x := later

When a simply expanded variable is referenced, its value is
substituted verbatim.

Here is a somewhat more complicated example, illustrating the use of
‘:=’ in conjunction with the ‘shell’ function. (See

The ‘shell’ Function
.) This example also shows use of the variable

‘MAKELEVEL’, which is changed when it is passed down from level to
level. (See

Communicating Variables to a Sub-‘make’
, for information

about ‘MAKELEVEL’.)

ifeq (0,${MAKELEVEL})
cur-dir := $(shell pwd)
whoami := $(shell whoami)
host-type := $(shell arch)
MAKE := ${MAKE} host-type=${host-type} whoami=${whoami}
endif

An advantage of this use of ‘:=’ is that a typical ‘descend into a
directory’ command then looks like this:

${subdirs}:
${MAKE} cur-dir=${cur-dir}/$@ -C $@ all

Simply expanded variables generally make complicated makefile
programming more predictable because they work like variables in most
programming languages. They allow you to redefine a variable using its
own value (or its value processed in some way by one of the expansion
functions) and to use the expansion functions much more efficiently
(see

Functions for Transforming Text
).

gnu:guide/make 69 / 206

You can also use them to introduce controlled leading whitespace into
variable values. Leading whitespace characters are discarded from your
input before substitution of variable references and function calls;
this means you can include leading spaces in a variable value by
protecting them with variable references, like this:

nullstring :=
space := $(nullstring) # end of the line

Here the value of the variable ‘space’ is precisely one space. The
comment ‘# end of the line’ is included here just for clarity. Since
trailing space characters are *not* stripped from variable values, just
a space at the end of the line would have the same effect (but be
rather hard to read). If you put whitespace at the end of a variable
value, it is a good idea to put a comment like that at the end of the
line to make your intent clear. Conversely, if you do *not* want any
whitespace characters at the end of your variable value, you must
remember not to put a random comment on the end of the line after some
whitespace, such as this:

dir := /foo/bar # directory to put the frobs in

Here the value of the variable ‘dir’ is ‘/foo/bar ’ (with four
trailing spaces), which was probably not the intention. (Imagine
something like ‘$(dir)/file’ with this definition!)

1.61 make.guide/Advanced

Advanced Features for Reference to Variables
==

This section describes some advanced features you can use to
reference variables in more flexible ways.

Substitution Refs
Referencing a variable with

substitutions on the value.

Computed Names
Computing the name of the variable to refer to.

1.62 make.guide/Substitution Refs

Substitution References

gnu:guide/make 70 / 206

A "substitution reference" substitutes the value of a variable with
alterations that you specify. It has the form ‘$(VAR:A=B)’ (or
‘${VAR:A=B}’) and its meaning is to take the value of the variable VAR,
replace every A at the end of a word with B in that value, and
substitute the resulting string.

When we say "at the end of a word", we mean that A must appear
either followed by whitespace or at the end of the value in order to be
replaced; other occurrences of A in the value are unaltered. For
example:

foo := a.o b.o c.o
bar := $(foo:.o=.c)

sets ‘bar’ to ‘a.c b.c c.c’. See
Setting Variables
.

A substitution reference is actually an abbreviation for use of the
‘patsubst’ expansion function (see

Functions for String Substitution and Analysis
). We provide

substitution references as well as ‘patsubst’ for compatibility with
other implementations of ‘make’.

Another type of substitution reference lets you use the full power of
the ‘patsubst’ function. It has the same form ‘$(VAR:A=B)’ described
above, except that now A must contain a single ‘%’ character. This
case is equivalent to ‘$(patsubst A,B,$(VAR))’. See

Functions for String Substitution and Analysis
, for a description of

the ‘patsubst’ function.

For example:

foo := a.o b.o c.o
bar := $(foo:%.o=%.c)

sets ‘bar’ to ‘a.c b.c c.c’.

1.63 make.guide/Computed Names

Computed Variable Names

Computed variable names are a complicated concept needed only for
sophisticated makefile programming. For most purposes you need not
consider them, except to know that making a variable with a dollar sign
in its name might have strange results. However, if you are the type
that wants to understand everything, or you are actually interested in

gnu:guide/make 71 / 206

what they do, read on.

Variables may be referenced inside the name of a variable. This is
called a "computed variable name" or a "nested variable reference".
For example,

x = y
y = z
a := $($(x))

defines ‘a’ as ‘z’: the ‘$(x)’ inside ‘$($(x))’ expands to ‘y’, so
‘$($(x))’ expands to ‘$(y)’ which in turn expands to ‘z’. Here the
name of the variable to reference is not stated explicitly; it is
computed by expansion of ‘$(x)’. The reference ‘$(x)’ here is nested
within the outer variable reference.

The previous example shows two levels of nesting, but any number of
levels is possible. For example, here are three levels:

x = y
y = z
z = u
a := $($($(x)))

Here the innermost ‘$(x)’ expands to ‘y’, so ‘$($(x))’ expands to
‘$(y)’ which in turn expands to ‘z’; now we have ‘$(z)’, which becomes
‘u’.

References to recursively-expanded variables within a variable name
are reexpanded in the usual fashion. For example:

x = $(y)
y = z
z = Hello
a := $($(x))

defines ‘a’ as ‘Hello’: ‘$($(x))’ becomes ‘$($(y))’ which becomes
‘$(z)’ which becomes ‘Hello’.

Nested variable references can also contain modified references and
function invocations (see

Functions for Transforming Text
), just like

any other reference. For example, using the ‘subst’ function (see

Functions for String Substitution and Analysis
):

x = variable1
variable2 := Hello
y = $(subst 1,2,$(x))
z = y
a := $($($(z)))

eventually defines ‘a’ as ‘Hello’. It is doubtful that anyone would
ever want to write a nested reference as convoluted as this one, but it
works: ‘$($($(z)))’ expands to ‘$($(y))’ which becomes ‘$($(subst

gnu:guide/make 72 / 206

1,2,$(x)))’. This gets the value ‘variable1’ from ‘x’ and changes it
by substitution to ‘variable2’, so that the entire string becomes
‘$(variable2)’, a simple variable reference whose value is ‘Hello’.

A computed variable name need not consist entirely of a single
variable reference. It can contain several variable references, as
well as some invariant text. For example,

a_dirs := dira dirb
1_dirs := dir1 dir2

a_files := filea fileb
1_files := file1 file2

ifeq "$(use_a)" "yes"
a1 := a
else
a1 := 1
endif

ifeq "$(use_dirs)" "yes"
df := dirs
else
df := files
endif

dirs := $($(a1)_$(df))

will give ‘dirs’ the same value as ‘a_dirs’, ‘1_dirs’, ‘a_files’ or
‘1_files’ depending on the settings of ‘use_a’ and ‘use_dirs’.

Computed variable names can also be used in substitution references:

a_objects := a.o b.o c.o
1_objects := 1.o 2.o 3.o

sources := $($(a1)_objects:.o=.c)

defines ‘sources’ as either ‘a.c b.c c.c’ or ‘1.c 2.c 3.c’, depending
on the value of ‘a1’.

The only restriction on this sort of use of nested variable
references is that they cannot specify part of the name of a function
to be called. This is because the test for a recognized function name
is done before the expansion of nested references. For example,

ifdef do_sort
func := sort
else
func := strip
endif

bar := a d b g q c

foo := $($(func) $(bar))

attempts to give ‘foo’ the value of the variable ‘sort a d b g q c’ or

gnu:guide/make 73 / 206

‘strip a d b g q c’, rather than giving ‘a d b g q c’ as the argument
to either the ‘sort’ or the ‘strip’ function. This restriction could
be removed in the future if that change is shown to be a good idea.

You can also use computed variable names in the left-hand side of a
variable assignment, or in a ‘define’ directive, as in:

dir = foo
$(dir)_sources := $(wildcard $(dir)/*.c)
define $(dir)_print
lpr $($(dir)_sources)
endef

This example defines the variables ‘dir’, ‘foo_sources’, and
‘foo_print’.

Note that "nested variable references" are quite different from
"recursively expanded variables" (see

The Two Flavors of Variables
),

though both are used together in complex ways when doing makefile
programming.

1.64 make.guide/Values

How Variables Get Their Values
==============================

Variables can get values in several different ways:

* You can specify an overriding value when you run ‘make’. See

Overriding Variables
.

* You can specify a value in the makefile, either with an assignment
(see

Setting Variables
) or with a verbatim definition (see

Defining Variables Verbatim
).

* Variables in the environment become ‘make’ variables. See

Variables from the Environment
.

* Several "automatic" variables are given new values for each rule.
Each of these has a single conventional use. See

Automatic Variables
.

gnu:guide/make 74 / 206

* Several variables have constant initial values. See

Variables Used by Implicit Rules
.

1.65 make.guide/Setting

Setting Variables
=================

To set a variable from the makefile, write a line starting with the
variable name followed by ‘=’ or ‘:=’. Whatever follows the ‘=’ or
‘:=’ on the line becomes the value. For example,

objects = main.o foo.o bar.o utils.o

defines a variable named ‘objects’. Whitespace around the variable
name and immediately after the ‘=’ is ignored.

Variables defined with ‘=’ are "recursively expanded" variables.
Variables defined with ‘:=’ are "simply expanded" variables; these
definitions can contain variable references which will be expanded
before the definition is made. See

The Two Flavors of Variables
.

The variable name may contain function and variable references, which
are expanded when the line is read to find the actual variable name to
use.

There is no limit on the length of the value of a variable except the
amount of swapping space on the computer. When a variable definition is
long, it is a good idea to break it into several lines by inserting
backslash-newline at convenient places in the definition. This will not
affect the functioning of ‘make’, but it will make the makefile easier
to read.

Most variable names are considered to have the empty string as a
value if you have never set them. Several variables have built-in
initial values that are not empty, but you can set them in the usual
ways (see

Variables Used by Implicit Rules
). Several special variables

are set automatically to a new value for each rule; these are called the
"automatic" variables (see

Automatic Variables
).

gnu:guide/make 75 / 206

1.66 make.guide/Appending

Appending More Text to Variables
================================

Often it is useful to add more text to the value of a variable
already defined. You do this with a line containing ‘+=’, like this:

objects += another.o

This takes the value of the variable ‘objects’, and adds the text
‘another.o’ to it (preceded by a single space). Thus:

objects = main.o foo.o bar.o utils.o
objects += another.o

sets ‘objects’ to ‘main.o foo.o bar.o utils.o another.o’.

Using ‘+=’ is similar to:

objects = main.o foo.o bar.o utils.o
objects := $(objects) another.o

but differs in ways that become important when you use more complex
values.

When the variable in question has not been defined before, ‘+=’ acts
just like normal ‘=’: it defines a recursively-expanded variable.
However, when there *is* a previous definition, exactly what ‘+=’ does
depends on what flavor of variable you defined originally. See

The Two Flavors of Variables
, for an explanation of the two flavors of

variables.

When you add to a variable’s value with ‘+=’, ‘make’ acts
essentially as if you had included the extra text in the initial
definition of the variable. If you defined it first with ‘:=’, making
it a simply-expanded variable, ‘+=’ adds to that simply-expanded
definition, and expands the new text before appending it to the old
value just as ‘:=’ does (see

Setting Variables
, for a full explanation

of ‘:=’). In fact,

variable := value
variable += more

is exactly equivalent to:

variable := value
variable := $(variable) more

On the other hand, when you use ‘+=’ with a variable that you defined
first to be recursively-expanded using plain ‘=’, ‘make’ does something
a bit different. Recall that when you define a recursively-expanded

gnu:guide/make 76 / 206

variable, ‘make’ does not expand the value you set for variable and
function references immediately. Instead it stores the text verbatim,
and saves these variable and function references to be expanded later,
when you refer to the new variable (see

The Two Flavors of Variables
).

When you use ‘+=’ on a recursively-expanded variable, it is this
unexpanded text to which ‘make’ appends the new text you specify.

variable = value
variable += more

is roughly equivalent to:

temp = value
variable = $(temp) more

except that of course it never defines a variable called ‘temp’. The
importance of this comes when the variable’s old value contains
variable references. Take this common example:

CFLAGS = $(includes) -O
...
CFLAGS += -pg # enable profiling

The first line defines the ‘CFLAGS’ variable with a reference to another
variable, ‘includes’. (‘CFLAGS’ is used by the rules for C
compilation; see

Catalogue of Implicit Rules
.) Using ‘=’ for the

definition makes ‘CFLAGS’ a recursively-expanded variable, meaning
‘$(includes) -O’ is *not* expanded when ‘make’ processes the definition
of ‘CFLAGS’. Thus, ‘includes’ need not be defined yet for its value to
take effect. It only has to be defined before any reference to
‘CFLAGS’. If we tried to append to the value of ‘CFLAGS’ without using
‘+=’, we might do it like this:

CFLAGS := $(CFLAGS) -pg # enable profiling

This is pretty close, but not quite what we want. Using ‘:=’ redefines
‘CFLAGS’ as a simply-expanded variable; this means ‘make’ expands the
text ‘$(CFLAGS) -pg’ before setting the variable. If ‘includes’ is not
yet defined, we get ‘ -O -pg’, and a later definition of ‘includes’
will have no effect. Conversely, by using ‘+=’ we set ‘CFLAGS’ to the

unexpanded value ‘$(includes) -O -pg’. Thus we preserve the
reference to ‘includes’, so if that variable gets defined at any later
point, a reference like ‘$(CFLAGS)’ still uses its value.

1.67 make.guide/Override Directive

The ‘override’ Directive
========================

gnu:guide/make 77 / 206

If a variable has been set with a command argument (see

Overriding Variables
), then ordinary assignments in the makefile are

ignored. If you want to set the variable in the makefile even though
it was set with a command argument, you can use an ‘override’
directive, which is a line that looks like this:

override VARIABLE = VALUE

or

override VARIABLE := VALUE

To append more text to a variable defined on the command line, use:

override VARIABLE += MORE TEXT

See
Appending More Text to Variables
.

The ‘override’ directive was not invented for escalation in the war
between makefiles and command arguments. It was invented so you can
alter and add to values that the user specifies with command arguments.

For example, suppose you always want the ‘-g’ switch when you run the
C compiler, but you would like to allow the user to specify the other
switches with a command argument just as usual. You could use this
‘override’ directive:

override CFLAGS += -g

You can also use ‘override’ directives with ‘define’ directives.
This is done as you might expect:

override define foo
bar
endef

See
Defining Variables Verbatim
.

1.68 make.guide/Defining

Defining Variables Verbatim
===========================

Another way to set the value of a variable is to use the ‘define’
directive. This directive has an unusual syntax which allows newline
characters to be included in the value, which is convenient for defining
canned sequences of commands (see

gnu:guide/make 78 / 206

Defining Canned Command Sequences
).

The ‘define’ directive is followed on the same line by the name of
the variable and nothing more. The value to give the variable appears
on the following lines. The end of the value is marked by a line
containing just the word ‘endef’. Aside from this difference in
syntax, ‘define’ works just like ‘=’: it creates a recursively-expanded
variable (see

The Two Flavors of Variables
). The variable name may

contain function and variable references, which are expanded when the
directive is read to find the actual variable name to use.

define two-lines
echo foo
echo $(bar)
endef

The value in an ordinary assignment cannot contain a newline; but the
newlines that separate the lines of the value in a ‘define’ become part
of the variable’s value (except for the final newline which precedes
the ‘endef’ and is not considered part of the value).

The previous example is functionally equivalent to this:

two-lines = echo foo; echo $(bar)

since two commands separated by semicolon behave much like two separate
shell commands. However, note that using two separate lines means
‘make’ will invoke the shell twice, running an independent subshell for
each line. See

Command Execution
.

If you want variable definitions made with ‘define’ to take
precedence over command-line variable definitions, you can use the
‘override’ directive together with ‘define’:

override define two-lines
foo
$(bar)
endef

See
The ‘override’ Directive
.

1.69 make.guide/Environment

Variables from the Environment
==============================

gnu:guide/make 79 / 206

Variables in ‘make’ can come from the environment in which ‘make’ is
run. Every environment variable that ‘make’ sees when it starts up is
transformed into a ‘make’ variable with the same name and value. But
an explicit assignment in the makefile, or with a command argument,
overrides the environment. (If the ‘-e’ flag is specified, then values
from the environment override assignments in the makefile. See

Summary of Options
. But this is not recommended practice.)

Thus, by setting the variable ‘CFLAGS’ in your environment, you can
cause all C compilations in most makefiles to use the compiler switches
you prefer. This is safe for variables with standard or conventional
meanings because you know that no makefile will use them for other
things. (But this is not totally reliable; some makefiles set ‘CFLAGS’
explicitly and therefore are not affected by the value in the
environment.)

When ‘make’ is invoked recursively, variables defined in the outer
invocation can be passed to inner invocations through the environment
(see

Recursive Use of ‘make’
). By default, only variables that came

from the environment or the command line are passed to recursive
invocations. You can use the ‘export’ directive to pass other
variables. See

Communicating Variables to a Sub-‘make’
, for full

details.

Other use of variables from the environment is not recommended. It
is not wise for makefiles to depend for their functioning on
environment variables set up outside their control, since this would
cause different users to get different results from the same makefile.
This is against the whole purpose of most makefiles.

Such problems would be especially likely with the variable ‘SHELL’,
which is normally present in the environment to specify the user’s
choice of interactive shell. It would be very undesirable for this
choice to affect ‘make’. So ‘make’ ignores the environment value of
‘SHELL’.

1.70 make.guide/Conditionals

Conditional Parts of Makefiles

A "conditional" causes part of a makefile to be obeyed or ignored
depending on the values of variables. Conditionals can compare the
value of one variable to another, or the value of a variable to a
constant string. Conditionals control what ‘make’ actually "sees" in
the makefile, so they *cannot* be used to control shell commands at the
time of execution.

gnu:guide/make 80 / 206

Conditional Example
Example of a conditional

Conditional Syntax
The syntax of conditionals.

Testing Flags
Conditionals that test flags.

1.71 make.guide/Conditional Example

Example of a Conditional
========================

The following example of a conditional tells ‘make’ to use one set
of libraries if the ‘CC’ variable is ‘gcc’, and a different set of
libraries otherwise. It works by controlling which of two command
lines will be used as the command for a rule. The result is that
‘CC=gcc’ as an argument to ‘make’ changes not only which compiler is
used but also which libraries are linked.

libs_for_gcc = -lgnu
normal_libs =

foo: $(objects)
ifeq ($(CC),gcc)

$(CC) -o foo $(objects) $(libs_for_gcc)
else

$(CC) -o foo $(objects) $(normal_libs)
endif

This conditional uses three directives: one ‘ifeq’, one ‘else’ and
one ‘endif’.

The ‘ifeq’ directive begins the conditional, and specifies the
condition. It contains two arguments, separated by a comma and
surrounded by parentheses. Variable substitution is performed on both
arguments and then they are compared. The lines of the makefile
following the ‘ifeq’ are obeyed if the two arguments match; otherwise
they are ignored.

The ‘else’ directive causes the following lines to be obeyed if the
previous conditional failed. In the example above, this means that the
second alternative linking command is used whenever the first
alternative is not used. It is optional to have an ‘else’ in a
conditional.

The ‘endif’ directive ends the conditional. Every conditional must
end with an ‘endif’. Unconditional makefile text follows.

gnu:guide/make 81 / 206

As this example illustrates, conditionals work at the textual level:
the lines of the conditional are treated as part of the makefile, or
ignored, according to the condition. This is why the larger syntactic
units of the makefile, such as rules, may cross the beginning or the
end of the conditional.

When the variable ‘CC’ has the value ‘gcc’, the above example has
this effect:

foo: $(objects)
$(CC) -o foo $(objects) $(libs_for_gcc)

When the variable ‘CC’ has any other value, the effect is this:

foo: $(objects)
$(CC) -o foo $(objects) $(normal_libs)

Equivalent results can be obtained in another way by
conditionalizing a variable assignment and then using the variable
unconditionally:

libs_for_gcc = -lgnu
normal_libs =

ifeq ($(CC),gcc)
libs=$(libs_for_gcc)

else
libs=$(normal_libs)

endif

foo: $(objects)
$(CC) -o foo $(objects) $(libs)

1.72 make.guide/Conditional Syntax

Syntax of Conditionals
======================

The syntax of a simple conditional with no ‘else’ is as follows:

CONDITIONAL-DIRECTIVE
TEXT-IF-TRUE
endif

The TEXT-IF-TRUE may be any lines of text, to be considered as part of
the makefile if the condition is true. If the condition is false, no
text is used instead.

The syntax of a complex conditional is as follows:

CONDITIONAL-DIRECTIVE
TEXT-IF-TRUE
else
TEXT-IF-FALSE

gnu:guide/make 82 / 206

endif

If the condition is true, TEXT-IF-TRUE is used; otherwise,
TEXT-IF-FALSE is used instead. The TEXT-IF-FALSE can be any number of
lines of text.

The syntax of the CONDITIONAL-DIRECTIVE is the same whether the
conditional is simple or complex. There are four different directives
that test different conditions. Here is a table of them:

‘ifeq (ARG1, ARG2)’
‘ifeq ’ARG1’ ’ARG2’’
‘ifeq "ARG1" "ARG2"’
‘ifeq "ARG1" ’ARG2’’
‘ifeq ’ARG1’ "ARG2"’

Expand all variable references in ARG1 and ARG2 and compare them.
If they are identical, the TEXT-IF-TRUE is effective; otherwise,
the TEXT-IF-FALSE, if any, is effective.

Often you want to test if a variable has a non-empty value. When
the value results from complex expansions of variables and
functions, expansions you would consider empty may actually
contain whitespace characters and thus are not seen as empty.
However, you can use the ‘strip’ function (see

Text Functions
) to

avoid interpreting whitespace as a non-empty value. For example:

ifeq ($(strip $(foo)),)
TEXT-IF-EMPTY
endif

will evaluate TEXT-IF-EMPTY even if the expansion of ‘$(foo)’
contains whitespace characters.

‘ifneq (ARG1, ARG2)’
‘ifneq ’ARG1’ ’ARG2’’
‘ifneq "ARG1" "ARG2"’
‘ifneq "ARG1" ’ARG2’’
‘ifneq ’ARG1’ "ARG2"’

Expand all variable references in ARG1 and ARG2 and compare them.
If they are different, the TEXT-IF-TRUE is effective; otherwise,
the TEXT-IF-FALSE, if any, is effective.

‘ifdef VARIABLE-NAME’
If the variable VARIABLE-NAME has a non-empty value, the
TEXT-IF-TRUE is effective; otherwise, the TEXT-IF-FALSE, if any,
is effective. Variables that have never been defined have an
empty value.

Note that ‘ifdef’ only tests whether a variable has a value. It
does not expand the variable to see if that value is nonempty.
Consequently, tests using ‘ifdef’ return true for all definitions
except those like ‘foo =’. To test for an empty value, use
‘ifeq ($(foo),)’. For example,

bar =

gnu:guide/make 83 / 206

foo = $(bar)
ifdef foo
frobozz = yes
else
frobozz = no
endif

sets ‘frobozz’ to ‘yes’, while:

foo =
ifdef foo
frobozz = yes
else
frobozz = no
endif

sets ‘frobozz’ to ‘no’.

‘ifndef VARIABLE-NAME’
If the variable VARIABLE-NAME has an empty value, the TEXT-IF-TRUE
is effective; otherwise, the TEXT-IF-FALSE, if any, is effective.

Extra spaces are allowed and ignored at the beginning of the
conditional directive line, but a tab is not allowed. (If the line
begins with a tab, it will be considered a command for a rule.) Aside
from this, extra spaces or tabs may be inserted with no effect anywhere
except within the directive name or within an argument. A comment
starting with ‘#’ may appear at the end of the line.

The other two directives that play a part in a conditional are ‘else’
and ‘endif’. Each of these directives is written as one word, with no
arguments. Extra spaces are allowed and ignored at the beginning of the
line, and spaces or tabs at the end. A comment starting with ‘#’ may
appear at the end of the line.

Conditionals affect which lines of the makefile ‘make’ uses. If the
condition is true, ‘make’ reads the lines of the TEXT-IF-TRUE as part
of the makefile; if the condition is false, ‘make’ ignores those lines
completely. It follows that syntactic units of the makefile, such as
rules, may safely be split across the beginning or the end of the
conditional.

‘make’ evaluates conditionals when it reads a makefile.
Consequently, you cannot use automatic variables in the tests of
conditionals because they are not defined until commands are run (see

Automatic Variables
).

To prevent intolerable confusion, it is not permitted to start a
conditional in one makefile and end it in another. However, you may
write an ‘include’ directive within a conditional, provided you do not
attempt to terminate the conditional inside the included file.

gnu:guide/make 84 / 206

1.73 make.guide/Testing Flags

Conditionals that Test Flags
============================

You can write a conditional that tests ‘make’ command flags such as
‘-t’ by using the variable ‘MAKEFLAGS’ together with the ‘findstring’
function (see

Functions for String Substitution and Analysis
). This is

useful when ‘touch’ is not enough to make a file appear up to date.

The ‘findstring’ function determines whether one string appears as a
substring of another. If you want to test for the ‘-t’ flag, use ‘t’
as the first string and the value of ‘MAKEFLAGS’ as the other.

For example, here is how to arrange to use ‘ranlib -t’ to finish
marking an archive file up to date:

archive.a: ...
ifneq (,$(findstring t,$(MAKEFLAGS)))

+touch archive.a
+ranlib -t archive.a

else
ranlib archive.a

endif

The ‘+’ prefix marks those command lines as "recursive" so that they
will be executed despite use of the ‘-t’ flag. See

Recursive Use of ‘make’
.

1.74 make.guide/Functions

Functions for Transforming Text

"Functions" allow you to do text processing in the makefile to
compute the files to operate on or the commands to use. You use a
function in a "function call", where you give the name of the function
and some text (the "arguments") for the function to operate on. The
result of the function’s processing is substituted into the makefile at
the point of the call, just as a variable might be substituted.

Syntax of Functions
How to write a function call.

Text Functions
General-purpose text manipulation functions.

gnu:guide/make 85 / 206

Filename Functions
Functions for manipulating file names.

Foreach Function
Repeat some text with controlled variation.

Origin Function
Find where a variable got its value.

Shell Function
Substitute the output of a shell command.

1.75 make.guide/Syntax of Functions

Function Call Syntax
====================

A function call resembles a variable reference. It looks like this:

$(FUNCTION ARGUMENTS)

or like this:

${FUNCTION ARGUMENTS}

Here FUNCTION is a function name; one of a short list of names that
are part of ‘make’. There is no provision for defining new functions.

The ARGUMENTS are the arguments of the function. They are separated
from the function name by one or more spaces or tabs, and if there is
more than one argument, then they are separated by commas. Such
whitespace and commas are not part of an argument’s value. The
delimiters which you use to surround the function call, whether
parentheses or braces, can appear in an argument only in matching pairs;
the other kind of delimiters may appear singly. If the arguments
themselves contain other function calls or variable references, it is
wisest to use the same kind of delimiters for all the references; write
‘$(subst a,b,$(x))’, not ‘$(subst a,b,${x})’. This is because it is
clearer, and because only one type of delimiter is matched to find the
end of the reference.

The text written for each argument is processed by substitution of
variables and function calls to produce the argument value, which is
the text on which the function acts. The substitution is done in the
order in which the arguments appear.

Commas and unmatched parentheses or braces cannot appear in the text
of an argument as written; leading spaces cannot appear in the text of
the first argument as written. These characters can be put into the
argument value by variable substitution. First define variables
‘comma’ and ‘space’ whose values are isolated comma and space
characters, then substitute these variables where such characters are

gnu:guide/make 86 / 206

wanted, like this:

comma:= ,
empty:=
space:= $(empty) $(empty)
foo:= a b c
bar:= $(subst $(space),$(comma),$(foo))
bar is now ‘a,b,c’.

Here the ‘subst’ function replaces each space with a comma, through the
value of ‘foo’, and substitutes the result.

1.76 make.guide/Text Functions

Functions for String Substitution and Analysis
==

Here are some functions that operate on strings:

‘$(subst FROM,TO,TEXT)’
Performs a textual replacement on the text TEXT: each occurrence
of FROM is replaced by TO. The result is substituted for the
function call. For example,

$(subst ee,EE,feet on the street)

substitutes the string ‘fEEt on the strEEt’.

‘$(patsubst PATTERN,REPLACEMENT,TEXT)’
Finds whitespace-separated words in TEXT that match PATTERN and
replaces them with REPLACEMENT. Here PATTERN may contain a ‘%’
which acts as a wildcard, matching any number of any characters
within a word. If REPLACEMENT also contains a ‘%’, the ‘%’ is
replaced by the text that matched the ‘%’ in PATTERN.

‘%’ characters in ‘patsubst’ function invocations can be quoted
with preceding backslashes (‘\’). Backslashes that would
otherwise quote ‘%’ characters can be quoted with more backslashes.
Backslashes that quote ‘%’ characters or other backslashes are
removed from the pattern before it is compared file names or has a
stem substituted into it. Backslashes that are not in danger of
quoting ‘%’ characters go unmolested. For example, the pattern
‘the\%weird\%pattern\’ has ‘the%weird\’ preceding the operative
‘%’ character, and ‘pattern\’ following it. The final two
backslashes are left alone because they cannot affect any ‘%’
character.

Whitespace between words is folded into single space characters;
leading and trailing whitespace is discarded.

For example,

$(patsubst %.c,%.o,x.c.c bar.c)

gnu:guide/make 87 / 206

produces the value ‘x.c.o bar.o’.

Substitution references (see
Substitution References
) are a

simpler way to get the effect of the ‘patsubst’ function:

$(VAR:PATTERN=REPLACEMENT)

is equivalent to

$(patsubst PATTERN,REPLACEMENT,$(VAR))

The second shorthand simplifies one of the most common uses of
‘patsubst’: replacing the suffix at the end of file names.

$(VAR:SUFFIX=REPLACEMENT)

is equivalent to

$(patsubst %SUFFIX,%REPLACEMENT,$(VAR))

For example, you might have a list of object files:

objects = foo.o bar.o baz.o

To get the list of corresponding source files, you could simply
write:

$(objects:.o=.c)

instead of using the general form:

$(patsubst %.o,%.c,$(objects))

‘$(strip STRING)’
Removes leading and trailing whitespace from STRING and replaces
each internal sequence of one or more whitespace characters with a
single space. Thus, ‘$(strip a b c)’ results in ‘a b c’.

The function ‘strip’ can be very useful when used in conjunction
with conditionals. When comparing something with the empty string
‘’ using ‘ifeq’ or ‘ifneq’, you usually want a string of just
whitespace to match the empty string (see

Conditionals
).

Thus, the following may fail to have the desired results:

.PHONY: all
ifneq "$(needs_made)" ""
all: $(needs_made)
else
all:;@echo ’Nothing to make!’
endif

Replacing the variable reference ‘$(needs_made)’ with the function

gnu:guide/make 88 / 206

call ‘$(strip $(needs_made))’ in the ‘ifneq’ directive would make
it more robust.

‘$(findstring FIND,IN)’
Searches IN for an occurrence of FIND. If it occurs, the value is
FIND; otherwise, the value is empty. You can use this function in
a conditional to test for the presence of a specific substring in
a given string. Thus, the two examples,

$(findstring a,a b c)
$(findstring a,b c)

produce the values ‘a’ and ‘’ (the empty string), respectively.
See

Testing Flags
, for a practical application of ‘findstring’.

‘$(filter PATTERN...,TEXT)’
Removes all whitespace-separated words in TEXT that do *not* match
any of the PATTERN words, returning only matching words. The
patterns are written using ‘%’, just like the patterns used in the
‘patsubst’ function above.

The ‘filter’ function can be used to separate out different types
of strings (such as file names) in a variable. For example:

sources := foo.c bar.c baz.s ugh.h
foo: $(sources)

cc $(filter %.c %.s,$(sources)) -o foo

says that ‘foo’ depends of ‘foo.c’, ‘bar.c’, ‘baz.s’ and ‘ugh.h’
but only ‘foo.c’, ‘bar.c’ and ‘baz.s’ should be specified in the
command to the compiler.

‘$(filter-out PATTERN...,TEXT)’
Removes all whitespace-separated words in TEXT that *do* match the
PATTERN words, returning only the words that *do not* match. This
is the exact opposite of the ‘filter’ function.

For example, given:

objects=main1.o foo.o main2.o bar.o
mains=main1.o main2.o

the following generates a list which contains all the object files
not in ‘mains’:

$(filter-out $(mains),$(objects))

‘$(sort LIST)’
Sorts the words of LIST in lexical order, removing duplicate
words. The output is a list of words separated by single spaces.
Thus,

$(sort foo bar lose)

returns the value ‘bar foo lose’.

gnu:guide/make 89 / 206

Incidentally, since ‘sort’ removes duplicate words, you can use it
for this purpose even if you don’t care about the sort order.

Here is a realistic example of the use of ‘subst’ and ‘patsubst’.
Suppose that a makefile uses the ‘VPATH’ variable to specify a list of
directories that ‘make’ should search for dependency files (see

‘VPATH’ Search Path for All Dependencies
). This example shows how to

tell the C compiler to search for header files in the same list of
directories.

The value of ‘VPATH’ is a list of directories separated by colons,
such as ‘src:../headers’. First, the ‘subst’ function is used to
change the colons to spaces:

$(subst :, ,$(VPATH))

This produces ‘src ../headers’. Then ‘patsubst’ is used to turn each
directory name into a ‘-I’ flag. These can be added to the value of
the variable ‘CFLAGS’, which is passed automatically to the C compiler,
like this:

override CFLAGS += $(patsubst %,-I%,$(subst :, ,$(VPATH)))

The effect is to append the text ‘-Isrc -I../headers’ to the previously
given value of ‘CFLAGS’. The ‘override’ directive is used so that the
new value is assigned even if the previous value of ‘CFLAGS’ was
specified with a command argument (see

The ‘override’ Directive
).

1.77 make.guide/Filename Functions

Functions for File Names
========================

Several of the built-in expansion functions relate specifically to
taking apart file names or lists of file names.

Each of the following functions performs a specific transformation
on a file name. The argument of the function is regarded as a series
of file names, separated by whitespace. (Leading and trailing
whitespace is ignored.) Each file name in the series is transformed in
the same way and the results are concatenated with single spaces
between them.

‘$(dir NAMES...)’
Extracts the directory-part of each file name in NAMES. The
directory-part of the file name is everything up through (and
including) the last slash in it. If the file name contains no
slash, the directory part is the string ‘./’. For example,

gnu:guide/make 90 / 206

$(dir src/foo.c hacks)

produces the result ‘src/ ./’.

‘$(notdir NAMES...)’
Extracts all but the directory-part of each file name in NAMES.
If the file name contains no slash, it is left unchanged.
Otherwise, everything through the last slash is removed from it.

A file name that ends with a slash becomes an empty string. This
is unfortunate, because it means that the result does not always
have the same number of whitespace-separated file names as the
argument had; but we do not see any other valid alternative.

For example,

$(notdir src/foo.c hacks)

produces the result ‘foo.c hacks’.

‘$(suffix NAMES...)’
Extracts the suffix of each file name in NAMES. If the file name
contains a period, the suffix is everything starting with the last
period. Otherwise, the suffix is the empty string. This
frequently means that the result will be empty when NAMES is not,
and if NAMES contains multiple file names, the result may contain
fewer file names.

For example,

$(suffix src/foo.c hacks)

produces the result ‘.c’.

‘$(basename NAMES...)’
Extracts all but the suffix of each file name in NAMES. If the
file name contains a period, the basename is everything starting
up to (and not including) the last period. Otherwise, the
basename is the entire file name. For example,

$(basename src/foo.c hacks)

produces the result ‘src/foo hacks’.

‘$(addsuffix SUFFIX,NAMES...)’
The argument NAMES is regarded as a series of names, separated by
whitespace; SUFFIX is used as a unit. The value of SUFFIX is
appended to the end of each individual name and the resulting
larger names are concatenated with single spaces between them.
For example,

$(addsuffix .c,foo bar)

produces the result ‘foo.c bar.c’.

‘$(addprefix PREFIX,NAMES...)’

gnu:guide/make 91 / 206

The argument NAMES is regarded as a series of names, separated by
whitespace; PREFIX is used as a unit. The value of PREFIX is
prepended to the front of each individual name and the resulting
larger names are concatenated with single spaces between them.
For example,

$(addprefix src/,foo bar)

produces the result ‘src/foo src/bar’.

‘$(join LIST1,LIST2)’
Concatenates the two arguments word by word: the two first words
(one from each argument) concatenated form the first word of the
result, the two second words form the second word of the result,
and so on. So the Nth word of the result comes from the Nth word
of each argument. If one argument has more words that the other,
the extra words are copied unchanged into the result.

For example, ‘$(join a b,.c .o)’ produces ‘a.c b.o’.

Whitespace between the words in the lists is not preserved; it is
replaced with a single space.

This function can merge the results of the ‘dir’ and ‘notdir’
functions, to produce the original list of files which was given
to those two functions.

‘$(word N,TEXT)’
Returns the Nth word of TEXT. The legitimate values of N start
from 1. If N is bigger than the number of words in TEXT, the
value is empty. For example,

$(word 2, foo bar baz)

returns ‘bar’.

‘$(words TEXT)’
Returns the number of words in TEXT. Thus, the last word of TEXT
is ‘$(word $(words TEXT),TEXT)’.

‘$(firstword NAMES...)’
The argument NAMES is regarded as a series of names, separated by
whitespace. The value is the first name in the series. The rest
of the names are ignored.

For example,

$(firstword foo bar)

produces the result ‘foo’. Although ‘$(firstword TEXT)’ is the
same as ‘$(word 1,TEXT)’, the ‘firstword’ function is retained for
its simplicity.

‘$(wildcard PATTERN)’
The argument PATTERN is a file name pattern, typically containing
wildcard characters (as in shell file name patterns). The result
of ‘wildcard’ is a space-separated list of the names of existing

gnu:guide/make 92 / 206

files that match the pattern. See

Using Wildcard Characters in File Names
.

1.78 make.guide/Foreach Function

The ‘foreach’ Function
======================

The ‘foreach’ function is very different from other functions. It
causes one piece of text to be used repeatedly, each time with a
different substitution performed on it. It resembles the ‘for’ command
in the shell ‘sh’ and the ‘foreach’ command in the C-shell ‘csh’.

The syntax of the ‘foreach’ function is:

$(foreach VAR,LIST,TEXT)

The first two arguments, VAR and LIST, are expanded before anything
else is done; note that the last argument, TEXT, is *not* expanded at
the same time. Then for each word of the expanded value of LIST, the
variable named by the expanded value of VAR is set to that word, and
TEXT is expanded. Presumably TEXT contains references to that
variable, so its expansion will be different each time.

The result is that TEXT is expanded as many times as there are
whitespace-separated words in LIST. The multiple expansions of TEXT
are concatenated, with spaces between them, to make the result of
‘foreach’.

This simple example sets the variable ‘files’ to the list of all
files in the directories in the list ‘dirs’:

dirs := a b c d
files := $(foreach dir,$(dirs),$(wildcard $(dir)/*))

Here TEXT is ‘$(wildcard $(dir)/*)’. The first repetition finds the
value ‘a’ for ‘dir’, so it produces the same result as ‘$(wildcard
a/*)’; the second repetition produces the result of ‘$(wildcard b/*)’;
and the third, that of ‘$(wildcard c/*)’.

This example has the same result (except for setting ‘dirs’) as the
following example:

files := $(wildcard a/* b/* c/* d/*)

When TEXT is complicated, you can improve readability by giving it a
name, with an additional variable:

find_files = $(wildcard $(dir)/*)
dirs := a b c d
files := $(foreach dir,$(dirs),$(find_files))

gnu:guide/make 93 / 206

Here we use the variable ‘find_files’ this way. We use plain ‘=’ to
define a recursively-expanding variable, so that its value contains an
actual function call to be reexpanded under the control of ‘foreach’; a
simply-expanded variable would not do, since ‘wildcard’ would be called
only once at the time of defining ‘find_files’.

The ‘foreach’ function has no permanent effect on the variable VAR;
its value and flavor after the ‘foreach’ function call are the same as
they were beforehand. The other values which are taken from LIST are
in effect only temporarily, during the execution of ‘foreach’. The
variable VAR is a simply-expanded variable during the execution of
‘foreach’. If VAR was undefined before the ‘foreach’ function call, it
is undefined after the call. See

The Two Flavors of Variables
.

You must take care when using complex variable expressions that
result in variable names because many strange things are valid variable
names, but are probably not what you intended. For example,

files := $(foreach Es escrito en espanol!,b c ch,$(find_files))

might be useful if the value of ‘find_files’ references the variable
whose name is ‘Es escrito en espanol!’ (es un nombre bastante largo,
no?), but it is more likely to be a mistake.

1.79 make.guide/Origin Function

The ‘origin’ Function
=====================

The ‘origin’ function is unlike most other functions in that it does
not operate on the values of variables; it tells you something *about*
a variable. Specifically, it tells you where it came from.

The syntax of the ‘origin’ function is:

$(origin VARIABLE)

Note that VARIABLE is the *name* of a variable to inquire about; not
a *reference* to that variable. Therefore you would not normally use a
‘$’ or parentheses when writing it. (You can, however, use a variable
reference in the name if you want the name not to be a constant.)

The result of this function is a string telling you how the variable
VARIABLE was defined:

‘undefined’
if VARIABLE was never defined.

‘default’
if VARIABLE has a default definition, as is usual with ‘CC’ and so

gnu:guide/make 94 / 206

on. See
Variables Used by Implicit Rules
. Note that if you have

redefined a default variable, the ‘origin’ function will return
the origin of the later definition.

‘environment’
if VARIABLE was defined as an environment variable and the ‘-e’
option is *not* turned on (see

Summary of Options
).

‘environment override’
if VARIABLE was defined as an environment variable and the ‘-e’
option *is* turned on (see

Summary of Options
).

‘file’
if VARIABLE was defined in a makefile.

‘command line’
if VARIABLE was defined on the command line.

‘override’
if VARIABLE was defined with an ‘override’ directive in a makefile
(see

The ‘override’ Directive
).

‘automatic’
if VARIABLE is an automatic variable defined for the execution of
the commands for each rule (see

Automatic Variables
).

This information is primarily useful (other than for your curiosity)
to determine if you want to believe the value of a variable. For
example, suppose you have a makefile ‘foo’ that includes another
makefile ‘bar’. You want a variable ‘bletch’ to be defined in ‘bar’ if
you run the command ‘make -f bar’, even if the environment contains a
definition of ‘bletch’. However, if ‘foo’ defined ‘bletch’ before
including ‘bar’, you do not want to override that definition. This
could be done by using an ‘override’ directive in ‘foo’, giving that
definition precedence over the later definition in ‘bar’;
unfortunately, the ‘override’ directive would also override any command
line definitions. So, ‘bar’ could include:

ifdef bletch
ifeq "$(origin bletch)" "environment"
bletch = barf, gag, etc.
endif
endif

If ‘bletch’ has been defined from the environment, this will redefine
it.

gnu:guide/make 95 / 206

If you want to override a previous definition of ‘bletch’ if it came
from the environment, even under ‘-e’, you could instead write:

ifneq "$(findstring environment,$(origin bletch))" ""
bletch = barf, gag, etc.
endif

Here the redefinition takes place if ‘$(origin bletch)’ returns
either ‘environment’ or ‘environment override’. See

Functions for String Substitution and Analysis
.

1.80 make.guide/Shell Function

The ‘shell’ Function
====================

The ‘shell’ function is unlike any other function except the
‘wildcard’ function (see

The Function ‘wildcard’
) in that it

communicates with the world outside of ‘make’.

The ‘shell’ function performs the same function that backquotes
(‘‘’) perform in most shells: it does "command expansion". This means
that it takes an argument that is a shell command and returns the
output of the command. The only processing ‘make’ does on the result,
before substituting it into the surrounding text, is to convert
newlines to spaces.

The commands run by calls to the ‘shell’ function are run when the
function calls are expanded. In most cases, this is when the makefile
is read in. The exception is that function calls in the commands of
the rules are expanded when the commands are run, and this applies to
‘shell’ function calls like all others.

Here are some examples of the use of the ‘shell’ function:

contents := $(shell cat foo)

sets ‘contents’ to the contents of the file ‘foo’, with a space (rather
than a newline) separating each line.

files := $(shell echo *.c)

sets ‘files’ to the expansion of ‘*.c’. Unless ‘make’ is using a very
strange shell, this has the same result as ‘$(wildcard *.c)’.

gnu:guide/make 96 / 206

1.81 make.guide/Running

How to Run ‘make’

A makefile that says how to recompile a program can be used in more
than one way. The simplest use is to recompile every file that is out
of date. Usually, makefiles are written so that if you run ‘make’ with
no arguments, it does just that.

But you might want to update only some of the files; you might want
to use a different compiler or different compiler options; you might
want just to find out which files are out of date without changing them.

By giving arguments when you run ‘make’, you can do any of these
things and many others.

The exit status of ‘make’ is always one of three values:
‘0’

The exit status is zero if ‘make’ is successful.

‘2’
The exit status is two if ‘make’ encounters any errors. It will
print messages describing the particular errors.

‘1’
The exit status is one if you use the ‘-q’ flag and ‘make’
determines that some target is not already up to date. See

Instead of Executing the Commands
.

Makefile Arguments
How to specify which makefile to use.

Goals
How to use goal arguments to specify which

parts of the makefile to use.

Instead of Execution
How to use mode flags to specify what

kind of thing to do with the commands
in the makefile other than simply
execute them.

Avoiding Compilation
How to avoid recompiling certain files.

Overriding
How to override a variable to specify

an alternate compiler and other things.

Testing
How to proceed past some errors, to

gnu:guide/make 97 / 206

test compilation.

Options Summary
Summary of Options

1.82 make.guide/Makefile Arguments

Arguments to Specify the Makefile
=================================

The way to specify the name of the makefile is with the ‘-f’ or
‘--file’ option (‘--makefile’ also works). For example, ‘-f altmake’
says to use the file ‘altmake’ as the makefile.

If you use the ‘-f’ flag several times and follow each ‘-f’ with an
argument, all the specified files are used jointly as makefiles.

If you do not use the ‘-f’ or ‘--file’ flag, the default is to try
‘GNUmakefile’, ‘makefile’, and ‘Makefile’, in that order, and use the
first of these three which exists or can be made (see

Writing Makefiles
).

1.83 make.guide/Goals

Arguments to Specify the Goals
==============================

The "goals" are the targets that ‘make’ should strive ultimately to
update. Other targets are updated as well if they appear as
dependencies of goals, or dependencies of dependencies of goals, etc.

By default, the goal is the first target in the makefile (not
counting targets that start with a period). Therefore, makefiles are
usually written so that the first target is for compiling the entire
program or programs they describe. If the first rule in the makefile
has several targets, only the first target in the rule becomes the
default goal, not the whole list.

You can specify a different goal or goals with arguments to ‘make’.
Use the name of the goal as an argument. If you specify several goals,
‘make’ processes each of them in turn, in the order you name them.

Any target in the makefile may be specified as a goal (unless it
starts with ‘-’ or contains an ‘=’, in which case it will be parsed as
a switch or variable definition, respectively). Even targets not in
the makefile may be specified, if ‘make’ can find implicit rules that

gnu:guide/make 98 / 206

say how to make them.

One use of specifying a goal is if you want to compile only a part of
the program, or only one of several programs. Specify as a goal each
file that you wish to remake. For example, consider a directory
containing several programs, with a makefile that starts like this:

.PHONY: all
all: size nm ld ar as

If you are working on the program ‘size’, you might want to say
‘make size’ so that only the files of that program are recompiled.

Another use of specifying a goal is to make files that are not
normally made. For example, there may be a file of debugging output,
or a version of the program that is compiled specially for testing,
which has a rule in the makefile but is not a dependency of the default
goal.

Another use of specifying a goal is to run the commands associated
with a phony target (see

Phony Targets
) or empty target (see

Empty Target Files to Record Events
). Many makefiles contain a phony

target named ‘clean’ which deletes everything except source files.
Naturally, this is done only if you request it explicitly with
‘make clean’. Following is a list of typical phony and empty target
names. See

Standard Targets
, for a detailed list of all the standard

target names which GNU software packages use.

‘all’
Make all the top-level targets the makefile knows about.

‘clean’
Delete all files that are normally created by running ‘make’.

‘mostlyclean’
Like ‘clean’, but may refrain from deleting a few files that people
normally don’t want to recompile. For example, the ‘mostlyclean’
target for GCC does not delete ‘libgcc.a’, because recompiling it
is rarely necessary and takes a lot of time.

‘distclean’
‘realclean’
‘clobber’

Any of these targets might be defined to delete *more* files than
‘clean’ does. For example, this would delete configuration files
or links that you would normally create as preparation for
compilation, even if the makefile itself cannot create these files.

‘install’
Copy the executable file into a directory that users typically
search for commands; copy any auxiliary files that the executable

gnu:guide/make 99 / 206

uses into the directories where it will look for them.

‘print’
Print listings of the source files that have changed.

‘tar’
Create a tar file of the source files.

‘shar’
Create a shell archive (shar file) of the source files.

‘dist’
Create a distribution file of the source files. This might be a
tar file, or a shar file, or a compressed version of one of the
above, or even more than one of the above.

‘TAGS’
Update a tags table for this program.

‘check’
‘test’

Perform self tests on the program this makefile builds.

1.84 make.guide/Instead of Execution

Instead of Executing the Commands
=================================

The makefile tells ‘make’ how to tell whether a target is up to date,
and how to update each target. But updating the targets is not always
what you want. Certain options specify other activities for ‘make’.

‘-n’
‘--just-print’
‘--dry-run’
‘--recon’

"No-op". The activity is to print what commands would be used to
make the targets up to date, but not actually execute them.

‘-t’
‘--touch’

"Touch". The activity is to mark the targets as up to date without
actually changing them. In other words, ‘make’ pretends to compile
the targets but does not really change their contents.

‘-q’
‘--question’

"Question". The activity is to find out silently whether the
targets are up to date already; but execute no commands in either
case. In other words, neither compilation nor output will occur.

‘-W FILE’
‘--what-if=FILE’

gnu:guide/make 100 / 206

‘--assume-new=FILE’
‘--new-file=FILE’

"What if". Each ‘-W’ flag is followed by a file name. The given
files’ modification times are recorded by ‘make’ as being the
present time, although the actual modification times remain the
same. You can use the ‘-W’ flag in conjunction with the ‘-n’ flag
to see what would happen if you were to modify specific files.

With the ‘-n’ flag, ‘make’ prints the commands that it would
normally execute but does not execute them.

With the ‘-t’ flag, ‘make’ ignores the commands in the rules and
uses (in effect) the command ‘touch’ for each target that needs to be
remade. The ‘touch’ command is also printed, unless ‘-s’ or ‘.SILENT’
is used. For speed, ‘make’ does not actually invoke the program
‘touch’. It does the work directly.

With the ‘-q’ flag, ‘make’ prints nothing and executes no commands,
but the exit status code it returns is zero if and only if the targets
to be considered are already up to date. If the exit status is one,
then some updating needs to be done. If ‘make’ encounters an error,
the exit status is two, so you can distinguish an error from a target
that is not up to date.

It is an error to use more than one of these three flags in the same
invocation of ‘make’.

The ‘-n’, ‘-t’, and ‘-q’ options do not affect command lines that
begin with ‘+’ characters or contain the strings ‘$(MAKE)’ or
‘${MAKE}’. Note that only the line containing the ‘+’ character or the
strings ‘$(MAKE)’ or ‘${MAKE}’ is run regardless of these options.
Other lines in the same rule are not run unless they too begin with ‘+’
or contain ‘$(MAKE)’ or ‘${MAKE}’ (See

How the ‘MAKE’ Variable Works
.)

The ‘-W’ flag provides two features:

* If you also use the ‘-n’ or ‘-q’ flag, you can see what ‘make’
would do if you were to modify some files.

* Without the ‘-n’ or ‘-q’ flag, when ‘make’ is actually executing
commands, the ‘-W’ flag can direct ‘make’ to act as if some files
had been modified, without actually modifying the files.

Note that the options ‘-p’ and ‘-v’ allow you to obtain other
information about ‘make’ or about the makefiles in use (see

Summary of Options
).

1.85 make.guide/Avoiding Compilation

gnu:guide/make 101 / 206

Avoiding Recompilation of Some Files
====================================

Sometimes you may have changed a source file but you do not want to
recompile all the files that depend on it. For example, suppose you
add a macro or a declaration to a header file that many other files
depend on. Being conservative, ‘make’ assumes that any change in the
header file requires recompilation of all dependent files, but you know
that they do not need to be recompiled and you would rather not waste
the time waiting for them to compile.

If you anticipate the problem before changing the header file, you
can use the ‘-t’ flag. This flag tells ‘make’ not to run the commands
in the rules, but rather to mark the target up to date by changing its
last-modification date. You would follow this procedure:

1. Use the command ‘make’ to recompile the source files that really
need recompilation.

2. Make the changes in the header files.

3. Use the command ‘make -t’ to mark all the object files as up to
date. The next time you run ‘make’, the changes in the header
files will not cause any recompilation.

If you have already changed the header file at a time when some files
do need recompilation, it is too late to do this. Instead, you can use
the ‘-o FILE’ flag, which marks a specified file as "old" (see

Summary of Options
). This means that the file itself will not be

remade, and nothing else will be remade on its account. Follow this
procedure:

1. Recompile the source files that need compilation for reasons
independent of the particular header file, with ‘make -o
HEADERFILE’. If several header files are involved, use a separate
‘-o’ option for each header file.

2. Touch all the object files with ‘make -t’.

1.86 make.guide/Overriding

Overriding Variables
====================

An argument that contains ‘=’ specifies the value of a variable:
‘V=X’ sets the value of the variable V to X. If you specify a value in
this way, all ordinary assignments of the same variable in the makefile
are ignored; we say they have been "overridden" by the command line
argument.

gnu:guide/make 102 / 206

The most common way to use this facility is to pass extra flags to
compilers. For example, in a properly written makefile, the variable
‘CFLAGS’ is included in each command that runs the C compiler, so a
file ‘foo.c’ would be compiled something like this:

cc -c $(CFLAGS) foo.c

Thus, whatever value you set for ‘CFLAGS’ affects each compilation
that occurs. The makefile probably specifies the usual value for
‘CFLAGS’, like this:

CFLAGS=-g

Each time you run ‘make’, you can override this value if you wish.
For example, if you say ‘make CFLAGS=’-g -O’’, each C compilation will
be done with ‘cc -c -g -O’. (This illustrates how you can use quoting
in the shell to enclose spaces and other special characters in the
value of a variable when you override it.)

The variable ‘CFLAGS’ is only one of many standard variables that
exist just so that you can change them this way. See

Variables Used by Implicit Rules
, for a complete list.

You can also program the makefile to look at additional variables of
your own, giving the user the ability to control other aspects of how
the makefile works by changing the variables.

When you override a variable with a command argument, you can define
either a recursively-expanded variable or a simply-expanded variable.
The examples shown above make a recursively-expanded variable; to make a
simply-expanded variable, write ‘:=’ instead of ‘=’. But, unless you
want to include a variable reference or function call in the *value*
that you specify, it makes no difference which kind of variable you
create.

There is one way that the makefile can change a variable that you
have overridden. This is to use the ‘override’ directive, which is a
line that looks like this: ‘override VARIABLE = VALUE’ (see

The ‘override’ Directive
).

1.87 make.guide/Testing

Testing the Compilation of a Program
====================================

Normally, when an error happens in executing a shell command, ‘make’
gives up immediately, returning a nonzero status. No further commands
are executed for any target. The error implies that the goal cannot be
correctly remade, and ‘make’ reports this as soon as it knows.

gnu:guide/make 103 / 206

When you are compiling a program that you have just changed, this is
not what you want. Instead, you would rather that ‘make’ try compiling
every file that can be tried, to show you as many compilation errors as
possible.

On these occasions, you should use the ‘-k’ or ‘--keep-going’ flag.
This tells ‘make’ to continue to consider the other dependencies of the
pending targets, remaking them if necessary, before it gives up and
returns nonzero status. For example, after an error in compiling one
object file, ‘make -k’ will continue compiling other object files even
though it already knows that linking them will be impossible. In
addition to continuing after failed shell commands, ‘make -k’ will
continue as much as possible after discovering that it does not know
how to make a target or dependency file. This will always cause an
error message, but without ‘-k’, it is a fatal error (see

Summary of Options
).

The usual behavior of ‘make’ assumes that your purpose is to get the
goals up to date; once ‘make’ learns that this is impossible, it might
as well report the failure immediately. The ‘-k’ flag says that the
real purpose is to test as much as possible of the changes made in the
program, perhaps to find several independent problems so that you can
correct them all before the next attempt to compile. This is why Emacs’
‘M-x compile’ command passes the ‘-k’ flag by default.

1.88 make.guide/Options Summary

Summary of Options
==================

Here is a table of all the options ‘make’ understands:

‘-b’
‘-m’

These options are ignored for compatibility with other versions of
‘make’.

‘-C DIR’
‘--directory=DIR’

Change to directory DIR before reading the makefiles. If multiple
‘-C’ options are specified, each is interpreted relative to the
previous one: ‘-C / -C etc’ is equivalent to ‘-C /etc’. This is
typically used with recursive invocations of ‘make’ (see

Recursive Use of ‘make’
).

‘-d’
‘--debug’

Print debugging information in addition to normal processing. The

gnu:guide/make 104 / 206

debugging information says which files are being considered for
remaking, which file-times are being compared and with what
results, which files actually need to be remade, which implicit
rules are considered and which are applied--everything interesting
about how ‘make’ decides what to do.

‘-e’
‘--environment-overrides’

Give variables taken from the environment precedence over
variables from makefiles. See

Variables from the Environment
.

‘-f FILE’
‘--file=FILE’
‘--makefile=FILE’

Read the file named FILE as a makefile. See
Writing Makefiles
.

‘-h’
‘--help’

Remind you of the options that ‘make’ understands and then exit.

‘-i’
‘--ignore-errors’

Ignore all errors in commands executed to remake files. See

Errors in Commands
.

‘-I DIR’
‘--include-dir=DIR’

Specifies a directory DIR to search for included makefiles. See

Including Other Makefiles
. If several ‘-I’ options are used to

specify several directories, the directories are searched in the
order specified.

‘-j [JOBS]’
‘--jobs=[JOBS]’

Specifies the number of jobs (commands) to run simultaneously.
With no argument, ‘make’ runs as many jobs simultaneously as
possible. If there is more than one ‘-j’ option, the last one is
effective. See

Parallel Execution
, for more information on how

commands are run.

‘-k’
‘--keep-going’

Continue as much as possible after an error. While the target that
failed, and those that depend on it, cannot be remade, the other
dependencies of these targets can be processed all the same. See

Testing the Compilation of a Program

gnu:guide/make 105 / 206

.

‘-l [LOAD]’
‘--load-average[=LOAD]’
‘--max-load[=LOAD]’

Specifies that no new jobs (commands) should be started if there
are other jobs running and the load average is at least LOAD (a
floating-point number). With no argument, removes a previous load
limit. See

Parallel Execution
.

‘-n’
‘--just-print’
‘--dry-run’
‘--recon’

Print the commands that would be executed, but do not execute them.
See

Instead of Executing the Commands
.

‘-o FILE’
‘--old-file=FILE’
‘--assume-old=FILE’

Do not remake the file FILE even if it is older than its
dependencies, and do not remake anything on account of changes in
FILE. Essentially the file is treated as very old and its rules
are ignored. See

Avoiding Recompilation of Some Files
.

‘-p’
‘--print-data-base’

Print the data base (rules and variable values) that results from
reading the makefiles; then execute as usual or as otherwise
specified. This also prints the version information given by the
‘-v’ switch (see below). To print the data base without trying to
remake any files, use ‘make -p -f /dev/null’.

‘-q’
‘--question’

"Question mode". Do not run any commands, or print anything; just
return an exit status that is zero if the specified targets are
already up to date, one if any remaking is required, or two if an
error is encountered. See

Instead of Executing the Commands
.

‘-r’
‘--no-builtin-rules’

Eliminate use of the built-in implicit rules (see

Using Implicit Rules
). You can still define your own by writing

pattern rules (see
Defining and Redefining Pattern Rules
). The

gnu:guide/make 106 / 206

‘-r’ option also clears out the default list of suffixes for
suffix rules (see

Old-Fashioned Suffix Rules
). But you can still

define your own suffixes with a rule for ‘.SUFFIXES’, and then
define your own suffix rules.

‘-s’
‘--silent’
‘--quiet’

Silent operation; do not print the commands as they are executed.
See

Command Echoing
.

‘-S’
‘--no-keep-going’
‘--stop’

Cancel the effect of the ‘-k’ option. This is never necessary
except in a recursive ‘make’ where ‘-k’ might be inherited from
the top-level ‘make’ via ‘MAKEFLAGS’ (see

Recursive Use of ‘make’
)

or if you set ‘-k’ in ‘MAKEFLAGS’ in your environment.

‘-t’
‘--touch’

Touch files (mark them up to date without really changing them)
instead of running their commands. This is used to pretend that
the commands were done, in order to fool future invocations of
‘make’. See

Instead of Executing the Commands
.

‘-v’
‘--version’

Print the version of the ‘make’ program plus a copyright, a list
of authors, and a notice that there is no warranty; then exit.

‘-w’
‘--print-directory’

Print a message containing the working directory both before and
after executing the makefile. This may be useful for tracking
down errors from complicated nests of recursive ‘make’ commands.
See

Recursive Use of ‘make’
. (In practice, you rarely need to

specify this option since ‘make’ does it for you; see See

The ‘--print-directory’ Option
.)

‘--no-print-directory’
Disable printing of the working directory under ‘-w’. This option
is useful when ‘-w’ is turned on automatically, but you do not
want to see the extra messages. See

gnu:guide/make 107 / 206

The ‘--print-directory’ Option
.

‘-W FILE’
‘--what-if=FILE’
‘--new-file=FILE’
‘--assume-new=FILE’

Pretend that the target FILE has just been modified. When used
with the ‘-n’ flag, this shows you what would happen if you were
to modify that file. Without ‘-n’, it is almost the same as
running a ‘touch’ command on the given file before running ‘make’,
except that the modification time is changed only in the
imagination of ‘make’. See

Instead of Executing the Commands
.

‘--warn-undefined-variables’
Issue a warning message whenever ‘make’ sees a reference to an
undefined variable. This can be helpful when you are trying to
debug makefiles which use variables in complex ways.

1.89 make.guide/Implicit Rules

Using Implicit Rules

Certain standard ways of remaking target files are used very often.
For example, one customary way to make an object file is from a C
source file using the C compiler, ‘cc’.

"Implicit rules" tell ‘make’ how to use customary techniques so that
you do not have to specify them in detail when you want to use them.
For example, there is an implicit rule for C compilation. File names
determine which implicit rules are run. For example, C compilation
typically takes a ‘.c’ file and makes a ‘.o’ file. So ‘make’ applies
the implicit rule for C compilation when it sees this combination of
file name endings.

A chain of implicit rules can apply in sequence; for example, ‘make’
will remake a ‘.o’ file from a ‘.y’ file by way of a ‘.c’ file.

The built-in implicit rules use several variables in their commands
so that, by changing the values of the variables, you can change the
way the implicit rule works. For example, the variable ‘CFLAGS’
controls the flags given to the C compiler by the implicit rule for C
compilation.

You can define your own implicit rules by writing "pattern rules".

"Suffix rules" are a more limited way to define implicit rules.
Pattern rules are more general and clearer, but suffix rules are
retained for compatibility.

gnu:guide/make 108 / 206

Using Implicit
How to use an existing implicit rule

to get the commands for updating a file.

Catalogue of Rules
A list of built-in implicit rules.

Implicit Variables
How to change what predefined rules do.

Chained Rules
How to use a chain of implicit rules.

Pattern Rules
How to define new implicit rules.

Last Resort
How to defining commands for rules
which cannot find any.

Suffix Rules
The old-fashioned style of implicit rule.

Search Algorithm
The precise algorithm for applying

implicit rules.

1.90 make.guide/Using Implicit

Using Implicit Rules
====================

To allow ‘make’ to find a customary method for updating a target
file, all you have to do is refrain from specifying commands yourself.
Either write a rule with no command lines, or don’t write a rule at
all. Then ‘make’ will figure out which implicit rule to use based on
which kind of source file exists or can be made.

For example, suppose the makefile looks like this:

foo : foo.o bar.o
cc -o foo foo.o bar.o $(CFLAGS) $(LDFLAGS)

Because you mention ‘foo.o’ but do not give a rule for it, ‘make’ will
automatically look for an implicit rule that tells how to update it.
This happens whether or not the file ‘foo.o’ currently exists.

If an implicit rule is found, it can supply both commands and one or
more dependencies (the source files). You would want to write a rule
for ‘foo.o’ with no command lines if you need to specify additional
dependencies, such as header files, that the implicit rule cannot

gnu:guide/make 109 / 206

supply.

Each implicit rule has a target pattern and dependency patterns.
There may be many implicit rules with the same target pattern. For
example, numerous rules make ‘.o’ files: one, from a ‘.c’ file with the
C compiler; another, from a ‘.p’ file with the Pascal compiler; and so
on. The rule that actually applies is the one whose dependencies exist
or can be made. So, if you have a file ‘foo.c’, ‘make’ will run the C
compiler; otherwise, if you have a file ‘foo.p’, ‘make’ will run the
Pascal compiler; and so on.

Of course, when you write the makefile, you know which implicit rule
you want ‘make’ to use, and you know it will choose that one because you
know which possible dependency files are supposed to exist. See

Catalogue of Implicit Rules
, for a catalogue of all the predefined

implicit rules.

Above, we said an implicit rule applies if the required dependencies
"exist or can be made". A file "can be made" if it is mentioned
explicitly in the makefile as a target or a dependency, or if an
implicit rule can be recursively found for how to make it. When an
implicit dependency is the result of another implicit rule, we say that
"chaining" is occurring. See

Chains of Implicit Rules
.

In general, ‘make’ searches for an implicit rule for each target, and
for each double-colon rule, that has no commands. A file that is
mentioned only as a dependency is considered a target whose rule
specifies nothing, so implicit rule search happens for it. See

Implicit Rule Search Algorithm
, for the details of how the search is

done.

Note that explicit dependencies do not influence implicit rule
search. For example, consider this explicit rule:

foo.o: foo.p

The dependency on ‘foo.p’ does not necessarily mean that ‘make’ will
remake ‘foo.o’ according to the implicit rule to make an object file, a
‘.o’ file, from a Pascal source file, a ‘.p’ file. For example, if
‘foo.c’ also exists, the implicit rule to make an object file from a C
source file is used instead, because it appears before the Pascal rule
in the list of predefined implicit rules (see

Catalogue of Implicit Rules
).

If you do not want an implicit rule to be used for a target that has
no commands, you can give that target empty commands by writing a
semicolon (see

Defining Empty Commands
).

gnu:guide/make 110 / 206

1.91 make.guide/Catalogue of Rules

Catalogue of Implicit Rules
===========================

Here is a catalogue of predefined implicit rules which are always
available unless the makefile explicitly overrides or cancels them.
See

Canceling Implicit Rules
, for information on canceling or

overriding an implicit rule. The ‘-r’ or ‘--no-builtin-rules’ option
cancels all predefined rules.

Not all of these rules will always be defined, even when the ‘-r’
option is not given. Many of the predefined implicit rules are
implemented in ‘make’ as suffix rules, so which ones will be defined
depends on the "suffix list" (the list of dependencies of the special
target ‘.SUFFIXES’). The default suffix list is: ‘.out’, ‘.a’, ‘.ln’,
‘.o’, ‘.c’, ‘.cc’, ‘.C’, ‘.p’, ‘.f’, ‘.F’, ‘.r’, ‘.y’, ‘.l’, ‘.s’,
‘.S’, ‘.mod’, ‘.sym’, ‘.def’, ‘.h’, ‘.info’, ‘.dvi’, ‘.tex’, ‘.texinfo’,
‘.texi’, ‘.txinfo’, ‘.w’, ‘.ch’ ‘.web’, ‘.sh’, ‘.elc’, ‘.el’. All of
the implicit rules described below whose dependencies have one of these
suffixes are actually suffix rules. If you modify the suffix list, the
only predefined suffix rules in effect will be those named by one or
two of the suffixes that are on the list you specify; rules whose
suffixes fail to be on the list are disabled. See

Old-Fashioned Suffix Rules
, for full details on suffix rules.

Compiling C programs
‘N.o’ is made automatically from ‘N.c’ with a command of the form
‘$(CC) -c $(CPPFLAGS) $(CFLAGS)’.

Compiling C++ programs
‘N.o’ is made automatically from ‘N.cc’ or ‘N.C’ with a command of
the form ‘$(CXX) -c $(CPPFLAGS) $(CXXFLAGS)’. We encourage you to
use the suffix ‘.cc’ for C++ source files instead of ‘.C’.

Compiling Pascal programs
‘N.o’ is made automatically from ‘N.p’ with the command ‘$(PC) -c
$(PFLAGS)’.

Compiling Fortran and Ratfor programs
‘N.o’ is made automatically from ‘N.r’, ‘N.F’ or ‘N.f’ by running
the Fortran compiler. The precise command used is as follows:

‘.f’
‘$(FC) -c $(FFLAGS)’.

‘.F’
‘$(FC) -c $(FFLAGS) $(CPPFLAGS)’.

gnu:guide/make 111 / 206

‘.r’
‘$(FC) -c $(FFLAGS) $(RFLAGS)’.

Preprocessing Fortran and Ratfor programs
‘N.f’ is made automatically from ‘N.r’ or ‘N.F’. This rule runs
just the preprocessor to convert a Ratfor or preprocessable
Fortran program into a strict Fortran program. The precise
command used is as follows:

‘.F’
‘$(FC) -F $(CPPFLAGS) $(FFLAGS)’.

‘.r’
‘$(FC) -F $(FFLAGS) $(RFLAGS)’.

Compiling Modula-2 programs
‘N.sym’ is made from ‘N.def’ with a command of the form ‘$(M2C)
$(M2FLAGS) $(DEFFLAGS)’. ‘N.o’ is made from ‘N.mod’; the form is:
‘$(M2C) $(M2FLAGS) $(MODFLAGS)’.

Assembling and preprocessing assembler programs
‘N.o’ is made automatically from ‘N.s’ by running the assembler,
‘as’. The precise command is ‘$(AS) $(ASFLAGS)’.

‘N.s’ is made automatically from ‘N.S’ by running the C
preprocessor, ‘cpp’. The precise command is ‘$(CPP) $(CPPFLAGS)’.

Linking a single object file
‘N’ is made automatically from ‘N.o’ by running the linker
(usually called ‘ld’) via the C compiler. The precise command
used is ‘$(CC) $(LDFLAGS) N.o $(LOADLIBES)’.

This rule does the right thing for a simple program with only one
source file. It will also do the right thing if there are multiple
object files (presumably coming from various other source files),
one of which has a name matching that of the executable file.
Thus,

x: y.o z.o

when ‘x.c’, ‘y.c’ and ‘z.c’ all exist will execute:

cc -c x.c -o x.o
cc -c y.c -o y.o
cc -c z.c -o z.o
cc x.o y.o z.o -o x
rm -f x.o
rm -f y.o
rm -f z.o

In more complicated cases, such as when there is no object file
whose name derives from the executable file name, you must write
an explicit command for linking.

Each kind of file automatically made into ‘.o’ object files will
be automatically linked by using the compiler (‘$(CC)’, ‘$(FC)’ or

gnu:guide/make 112 / 206

‘$(PC)’; the C compiler ‘$(CC)’ is used to assemble ‘.s’ files)
without the ‘-c’ option. This could be done by using the ‘.o’
object files as intermediates, but it is faster to do the
compiling and linking in one step, so that’s how it’s done.

Yacc for C programs
‘N.c’ is made automatically from ‘N.y’ by running Yacc with the
command ‘$(YACC) $(YFLAGS)’.

Lex for C programs
‘N.c’ is made automatically from ‘N.l’ by by running Lex. The
actual command is ‘$(LEX) $(LFLAGS)’.

Lex for Ratfor programs
‘N.r’ is made automatically from ‘N.l’ by by running Lex. The
actual command is ‘$(LEX) $(LFLAGS)’.

The convention of using the same suffix ‘.l’ for all Lex files
regardless of whether they produce C code or Ratfor code makes it
impossible for ‘make’ to determine automatically which of the two
languages you are using in any particular case. If ‘make’ is
called upon to remake an object file from a ‘.l’ file, it must
guess which compiler to use. It will guess the C compiler, because
that is more common. If you are using Ratfor, make sure ‘make’
knows this by mentioning ‘N.r’ in the makefile. Or, if you are
using Ratfor exclusively, with no C files, remove ‘.c’ from the
list of implicit rule suffixes with:

.SUFFIXES:

.SUFFIXES: .o .r .f .l ...

Making Lint Libraries from C, Yacc, or Lex programs
‘N.ln’ is made from ‘N.c’ by running ‘lint’. The precise command
is ‘$(LINT) $(LINTFLAGS) $(CPPFLAGS) -i’. The same command is
used on the C code produced from ‘N.y’ or ‘N.l’.

TeX and Web
‘N.dvi’ is made from ‘N.tex’ with the command ‘$(TEX)’. ‘N.tex’
is made from ‘N.web’ with ‘$(WEAVE)’, or from ‘N.w’ (and from
‘N.ch’ if it exists or can be made) with ‘$(CWEAVE)’. ‘N.p’ is
made from ‘N.web’ with ‘$(TANGLE)’ and ‘N.c’ is made from ‘N.w’
(and from ‘N.ch’ if it exists or can be made) with ‘$(CTANGLE)’.

Texinfo and Info
‘N.dvi’ is made from ‘N.texinfo’, ‘N.texi’, or ‘N.txinfo’, with
the command ‘$(TEXI2DVI) $(TEXI2DVI_FLAGS)’. ‘N.info’ is made from
‘N.texinfo’, ‘N.texi’, or ‘N.txinfo’, with the command
‘$(MAKEINFO) $(MAKEINFO_FLAGS)’.

RCS
Any file ‘N’ is extracted if necessary from an RCS file named
either ‘N,v’ or ‘RCS/N,v’. The precise command used is
‘$(CO) $(COFLAGS)’. ‘N’ will not be extracted from RCS if it
already exists, even if the RCS file is newer. The rules for RCS
are terminal (see

Match-Anything Pattern Rules
), so RCS files

gnu:guide/make 113 / 206

cannot be generated from another source; they must actually exist.

SCCS
Any file ‘N’ is extracted if necessary from an SCCS file named
either ‘s.N’ or ‘SCCS/s.N’. The precise command used is
‘$(GET) $(GFLAGS)’. The rules for SCCS are terminal (see

Match-Anything Pattern Rules
), so SCCS files cannot be generated

from another source; they must actually exist.

For the benefit of SCCS, a file ‘N’ is copied from ‘N.sh’ and made
executable (by everyone). This is for shell scripts that are
checked into SCCS. Since RCS preserves the execution permission
of a file, you do not need to use this feature with RCS.

We recommend that you avoid using of SCCS. RCS is widely held to
be superior, and is also free. By choosing free software in place
of comparable (or inferior) proprietary software, you support the
free software movement.

Usually, you want to change only the variables listed in the table
above, which are documented in the following section.

However, the commands in built-in implicit rules actually use
variables such as ‘COMPILE.c’, ‘LINK.p’, and ‘PREPROCESS.S’, whose
values contain the commands listed above.

‘make’ follows the convention that the rule to compile a ‘.X’ source
file uses the variable ‘COMPILE.X’. Similarly, the rule to produce an
executable from a ‘.X’ file uses ‘LINK.X’; and the rule to preprocess a
‘.X’ file uses ‘PREPROCESS.X’.

Every rule that produces an object file uses the variable
‘OUTPUT_OPTION’. ‘make’ defines this variable either to contain ‘-o
$@’, or to be empty, depending on a compile-time option. You need the
‘-o’ option to ensure that the output goes into the right file when the
source file is in a different directory, as when using ‘VPATH’ (see

Directory Search
). However, compilers on some systems do not accept a

‘-o’ switch for object files. If you use such a system, and use
‘VPATH’, some compilations will put their output in the wrong place. A
possible workaround for this problem is to give ‘OUTPUT_OPTION’ the
value ‘; mv $*.o $@’.

1.92 make.guide/Implicit Variables

Variables Used by Implicit Rules
================================

The commands in built-in implicit rules make liberal use of certain
predefined variables. You can alter these variables in the makefile,

gnu:guide/make 114 / 206

with arguments to ‘make’, or in the environment to alter how the
implicit rules work without redefining the rules themselves.

For example, the command used to compile a C source file actually
says ‘$(CC) -c $(CFLAGS) $(CPPFLAGS)’. The default values of the
variables used are ‘cc’ and nothing, resulting in the command ‘cc -c’.
By redefining ‘CC’ to ‘ncc’, you could cause ‘ncc’ to be used for all C
compilations performed by the implicit rule. By redefining ‘CFLAGS’ to
be ‘-g’, you could pass the ‘-g’ option to each compilation. *All*
implicit rules that do C compilation use ‘$(CC)’ to get the program
name for the compiler and *all* include ‘$(CFLAGS)’ among the arguments
given to the compiler.

The variables used in implicit rules fall into two classes: those
that are names of programs (like ‘CC’) and those that contain arguments
for the programs (like ‘CFLAGS’). (The "name of a program" may also
contain some command arguments, but it must start with an actual
executable program name.) If a variable value contains more than one
argument, separate them with spaces.

Here is a table of variables used as names of programs in built-in
rules:

‘AR’
Archive-maintaining program; default ‘ar’.

‘AS’
Program for doing assembly; default ‘as’.

‘CC’
Program for compiling C programs; default ‘cc’.

‘CXX’
Program for compiling C++ programs; default ‘g++’.

‘CO’
Program for extracting a file from RCS; default ‘co’.

‘CPP’
Program for running the C preprocessor, with results to standard
output; default ‘$(CC) -E’.

‘FC’
Program for compiling or preprocessing Fortran and Ratfor programs;
default ‘f77’.

‘GET’
Program for extracting a file from SCCS; default ‘get’.

‘LEX’
Program to use to turn Lex grammars into C programs or Ratfor
programs; default ‘lex’.

‘PC’
Program for compiling Pascal programs; default ‘pc’.

‘YACC’

gnu:guide/make 115 / 206

Program to use to turn Yacc grammars into C programs; default
‘yacc’.

‘YACCR’
Program to use to turn Yacc grammars into Ratfor programs; default
‘yacc -r’.

‘MAKEINFO’
Program to convert a Texinfo source file into an Info file; default
‘makeinfo’.

‘TEX’
Program to make TeX DVI files from TeX source; default ‘tex’.

‘TEXI2DVI’
Program to make TeX DVI files from Texinfo source; default
‘texi2dvi’.

‘WEAVE’
Program to translate Web into TeX; default ‘weave’.

‘CWEAVE’
Program to translate C Web into TeX; default ‘cweave’.

‘TANGLE’
Program to translate Web into Pascal; default ‘tangle’.

‘CTANGLE’
Program to translate C Web into C; default ‘ctangle’.

‘RM’
Command to remove a file; default ‘rm -f’.

Here is a table of variables whose values are additional arguments
for the programs above. The default values for all of these is the
empty string, unless otherwise noted.

‘ARFLAGS’
Flags to give the archive-maintaining program; default ‘rv’.

‘ASFLAGS’
Extra flags to give to the assembler (when explicitly invoked on a
‘.s’ or ‘.S’ file).

‘CFLAGS’
Extra flags to give to the C compiler.

‘CXXFLAGS’
Extra flags to give to the C++ compiler.

‘COFLAGS’
Extra flags to give to the RCS ‘co’ program.

‘CPPFLAGS’
Extra flags to give to the C preprocessor and programs that use it
(the C and Fortran compilers).

gnu:guide/make 116 / 206

‘FFLAGS’
Extra flags to give to the Fortran compiler.

‘GFLAGS’
Extra flags to give to the SCCS ‘get’ program.

‘LDFLAGS’
Extra flags to give to compilers when they are supposed to invoke
the linker, ‘ld’.

‘LFLAGS’
Extra flags to give to Lex.

‘PFLAGS’
Extra flags to give to the Pascal compiler.

‘RFLAGS’
Extra flags to give to the Fortran compiler for Ratfor programs.

‘YFLAGS’
Extra flags to give to Yacc.

1.93 make.guide/Chained Rules

Chains of Implicit Rules
========================

Sometimes a file can be made by a sequence of implicit rules. For
example, a file ‘N.o’ could be made from ‘N.y’ by running first Yacc
and then ‘cc’. Such a sequence is called a "chain".

If the file ‘N.c’ exists, or is mentioned in the makefile, no
special searching is required: ‘make’ finds that the object file can be
made by C compilation from ‘N.c’; later on, when considering how to
make ‘N.c’, the rule for running Yacc is used. Ultimately both ‘N.c’
and ‘N.o’ are updated.

However, even if ‘N.c’ does not exist and is not mentioned, ‘make’
knows how to envision it as the missing link between ‘N.o’ and ‘N.y’!
In this case, ‘N.c’ is called an "intermediate file". Once ‘make’ has
decided to use the intermediate file, it is entered in the data base as
if it had been mentioned in the makefile, along with the implicit rule
that says how to create it.

Intermediate files are remade using their rules just like all other
files. The difference is that the intermediate file is deleted when
‘make’ is finished. Therefore, the intermediate file which did not
exist before ‘make’ also does not exist after ‘make’. The deletion is
reported to you by printing a ‘rm -f’ command that shows what ‘make’ is
doing. (You can list the target pattern of an implicit rule (such as
‘%.o’) as a dependency of the special target ‘.PRECIOUS’ to preserve
intermediate files made by implicit rules whose target patterns match
that file’s name; see See

Interrupts

gnu:guide/make 117 / 206

.)

A chain can involve more than two implicit rules. For example, it is
possible to make a file ‘foo’ from ‘RCS/foo.y,v’ by running RCS, Yacc
and ‘cc’. Then both ‘foo.y’ and ‘foo.c’ are intermediate files that
are deleted at the end.

No single implicit rule can appear more than once in a chain. This
means that ‘make’ will not even consider such a ridiculous thing as
making ‘foo’ from ‘foo.o.o’ by running the linker twice. This
constraint has the added benefit of preventing any infinite loop in the
search for an implicit rule chain.

There are some special implicit rules to optimize certain cases that
would otherwise be handled by rule chains. For example, making ‘foo’
from ‘foo.c’ could be handled by compiling and linking with separate
chained rules, using ‘foo.o’ as an intermediate file. But what
actually happens is that a special rule for this case does the
compilation and linking with a single ‘cc’ command. The optimized rule
is used in preference to the step-by-step chain because it comes
earlier in the ordering of rules.

1.94 make.guide/Pattern Rules

Defining and Redefining Pattern Rules
=====================================

You define an implicit rule by writing a "pattern rule". A pattern
rule looks like an ordinary rule, except that its target contains the
character ‘%’ (exactly one of them). The target is considered a
pattern for matching file names; the ‘%’ can match any nonempty
substring, while other characters match only themselves. The
dependencies likewise use ‘%’ to show how their names relate to the
target name.

Thus, a pattern rule ‘%.o : %.c’ says how to make any file ‘STEM.o’
from another file ‘STEM.c’.

Note that expansion using ‘%’ in pattern rules occurs *after* any
variable or function expansions, which take place when the makefile is
read. See

How to Use Variables
, and See

Functions for Transforming Text
.

Pattern Intro
An introduction to pattern rules.

Pattern Examples

gnu:guide/make 118 / 206

Examples of pattern rules.

Automatic
How to use automatic variables in the

commands of implicit rules.

Pattern Match
How patterns match.

Match-Anything Rules
Precautions you should take prior to

defining rules that can match any
target file whatever.

Canceling Rules
How to override or cancel built-in rules.

1.95 make.guide/Pattern Intro

Introduction to Pattern Rules

A pattern rule contains the character ‘%’ (exactly one of them) in
the target; otherwise, it looks exactly like an ordinary rule. The
target is a pattern for matching file names; the ‘%’ matches any
nonempty substring, while other characters match only themselves.

For example, ‘%.c’ as a pattern matches any file name that ends in
‘.c’. ‘s.%.c’ as a pattern matches any file name that starts with
‘s.’, ends in ‘.c’ and is at least five characters long. (There must
be at least one character to match the ‘%’.) The substring that the
‘%’ matches is called the "stem".

‘%’ in a dependency of a pattern rule stands for the same stem that
was matched by the ‘%’ in the target. In order for the pattern rule to
apply, its target pattern must match the file name under consideration,
and its dependency patterns must name files that exist or can be made.
These files become dependencies of the target.

Thus, a rule of the form

%.o : %.c ; COMMAND...

specifies how to make a file ‘N.o’, with another file ‘N.c’ as its
dependency, provided that ‘N.c’ exists or can be made.

There may also be dependencies that do not use ‘%’; such a dependency
attaches to every file made by this pattern rule. These unvarying
dependencies are useful occasionally.

A pattern rule need not have any dependencies that contain ‘%’, or
in fact any dependencies at all. Such a rule is effectively a general
wildcard. It provides a way to make any file that matches the target

gnu:guide/make 119 / 206

pattern. See
Last Resort
.

Pattern rules may have more than one target. Unlike normal rules,
this does not act as many different rules with the same dependencies and
commands. If a pattern rule has multiple targets, ‘make’ knows that
the rule’s commands are responsible for making all of the targets. The
commands are executed only once to make all the targets. When searching
for a pattern rule to match a target, the target patterns of a rule
other than the one that matches the target in need of a rule are
incidental: ‘make’ worries only about giving commands and dependencies
to the file presently in question. However, when this file’s commands
are run, the other targets are marked as having been updated themselves.

The order in which pattern rules appear in the makefile is important
since this is the order in which they are considered. Of equally
applicable rules, only the first one found is used. The rules you
write take precedence over those that are built in. Note however, that
a rule whose dependencies actually exist or are mentioned always takes
priority over a rule with dependencies that must be made by chaining
other implicit rules.

1.96 make.guide/Pattern Examples

Pattern Rule Examples

Here are some examples of pattern rules actually predefined in
‘make’. First, the rule that compiles ‘.c’ files into ‘.o’ files:

%.o : %.c
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

defines a rule that can make any file ‘X.o’ from ‘X.c’. The command
uses the automatic variables ‘$@’ and ‘$<’ to substitute the names of
the target file and the source file in each case where the rule applies
(see

Automatic Variables
).

Here is a second built-in rule:

% :: RCS/%,v
$(CO) $(COFLAGS) $<

defines a rule that can make any file ‘X’ whatsoever from a
corresponding file ‘X,v’ in the subdirectory ‘RCS’. Since the target
is ‘%’, this rule will apply to any file whatever, provided the
appropriate dependency file exists. The double colon makes the rule
"terminal", which means that its dependency may not be an intermediate
file (see

Match-Anything Pattern Rules

gnu:guide/make 120 / 206

).

This pattern rule has two targets:

%.tab.c %.tab.h: %.y
bison -d $<

This tells ‘make’ that the command ‘bison -d X.y’ will make both
‘X.tab.c’ and ‘X.tab.h’. If the file ‘foo’ depends on the files
‘parse.tab.o’ and ‘scan.o’ and the file ‘scan.o’ depends on the file
‘parse.tab.h’, when ‘parse.y’ is changed, the command ‘bison -d parse.y’
will be executed only once, and the dependencies of both ‘parse.tab.o’
and ‘scan.o’ will be satisfied. (Presumably the file ‘parse.tab.o’
will be recompiled from ‘parse.tab.c’ and the file ‘scan.o’ from
‘scan.c’, while ‘foo’ is linked from ‘parse.tab.o’, ‘scan.o’, and its
other dependencies, and it will execute happily ever after.)

1.97 make.guide/Automatic

Automatic Variables

Suppose you are writing a pattern rule to compile a ‘.c’ file into a
‘.o’ file: how do you write the ‘cc’ command so that it operates on the
right source file name? You cannot write the name in the command,
because the name is different each time the implicit rule is applied.

What you do is use a special feature of ‘make’, the "automatic
variables". These variables have values computed afresh for each rule
that is executed, based on the target and dependencies of the rule. In
this example, you would use ‘$@’ for the object file name and ‘$<’ for
the source file name.

Here is a table of automatic variables:

‘$@’
The file name of the target of the rule. If the target is an
archive member, then ‘$@’ is the name of the archive file. In a
pattern rule that has multiple targets (see

Introduction to Pattern Rules
), ‘$@’ is the name of whichever

target caused the rule’s commands to be run.

‘$%’
The target member name, when the target is an archive member. See

Archives
. For example, if the target is ‘foo.a(bar.o)’ then ‘$%’

is ‘bar.o’ and ‘$@’ is ‘foo.a’. ‘$%’ is empty when the target is
not an archive member.

‘$<’

gnu:guide/make 121 / 206

The name of the first dependency. If the target got its commands
from an implicit rule, this will be the first dependency added by
the implicit rule (see

Implicit Rules
).

‘$?’
The names of all the dependencies that are newer than the target,
with spaces between them. For dependencies which are archive
members, only the member named is used (see

Archives
).

‘$^’
The names of all the dependencies, with spaces between them. For
dependencies which are archive members, only the member named is
used (see

Archives
). A target has only one dependency on each

other file it depends on, no matter how many times each file is
listed as a dependency. So if you list a dependency more than
once for a target, the value of ‘$^’ contains just one copy of the
name.

‘$+’
This is like ‘$^’, but dependencies listed more than once are
duplicated in the order they were listed in the makefile. This is
primarily useful for use in linking commands where it is
meaningful to repeat library file names in a particular order.

‘$*’
The stem with which an implicit rule matches (see

How Patterns Match
). If the target is ‘dir/a.foo.b’ and the target

pattern is ‘a.%.b’ then the stem is ‘dir/foo’. The stem is useful
for constructing names of related files.

In a static pattern rule, the stem is part of the file name that
matched the ‘%’ in the target pattern.

In an explicit rule, there is no stem; so ‘$*’ cannot be determined
in that way. Instead, if the target name ends with a recognized
suffix (see

Old-Fashioned Suffix Rules
), ‘$*’ is set to the target

name minus the suffix. For example, if the target name is
‘foo.c’, then ‘$*’ is set to ‘foo’, since ‘.c’ is a suffix. GNU
‘make’ does this bizarre thing only for compatibility with other
implementations of ‘make’. You should generally avoid using ‘$*’
except in implicit rules or static pattern rules.

If the target name in an explicit rule does not end with a
recognized suffix, ‘$*’ is set to the empty string for that rule.

‘$?’ is useful even in explicit rules when you wish to operate on
only the dependencies that have changed. For example, suppose that an

gnu:guide/make 122 / 206

archive named ‘lib’ is supposed to contain copies of several object
files. This rule copies just the changed object files into the archive:

lib: foo.o bar.o lose.o win.o
ar r lib $?

Of the variables listed above, four have values that are single file
names, and two have values that are lists of file names. These six have
variants that get just the file’s directory name or just the file name
within the directory. The variant variables’ names are formed by
appending ‘D’ or ‘F’, respectively. These variants are semi-obsolete
in GNU ‘make’ since the functions ‘dir’ and ‘notdir’ can be used to get
a similar effect (see

Functions for File Names
). Note, however, that

the ‘F’ variants all omit the trailing slash which always appears in
the output of the ‘dir’ function. Here is a table of the variants:

‘$(@D)’
The directory part of the file name of the target, with the
trailing slash removed. If the value of ‘$@’ is ‘dir/foo.o’ then
‘$(@D)’ is ‘dir’. This value is ‘.’ if ‘$@’ does not contain a
slash.

‘$(@F)’
The file-within-directory part of the file name of the target. If
the value of ‘$@’ is ‘dir/foo.o’ then ‘$(@F)’ is ‘foo.o’. ‘$(@F)’
is equivalent to ‘$(notdir $@)’.

‘$(*D)’
‘$(*F)’

The directory part and the file-within-directory part of the stem;
‘dir’ and ‘foo’ in this example.

‘$(%D)’
‘$(%F)’

The directory part and the file-within-directory part of the target
archive member name. This makes sense only for archive member
targets of the form ‘ARCHIVE(MEMBER)’ and is useful only when
MEMBER may contain a directory name. (See

Archive Members as Targets
.)

‘$(<D)’
‘$(<F)’

The directory part and the file-within-directory part of the first
dependency.

‘$(^D)’
‘$(^F)’

Lists of the directory parts and the file-within-directory parts
of all dependencies.

‘$(?D)’
‘$(?F)’

Lists of the directory parts and the file-within-directory parts of

gnu:guide/make 123 / 206

all dependencies that are newer than the target.

Note that we use a special stylistic convention when we talk about
these automatic variables; we write "the value of ‘$<’", rather than
"the variable ‘<’" as we would write for ordinary variables such as
‘objects’ and ‘CFLAGS’. We think this convention looks more natural in
this special case. Please do not assume it has a deep significance;
‘$<’ refers to the variable named ‘<’ just as ‘$(CFLAGS)’ refers to the
variable named ‘CFLAGS’. You could just as well use ‘$(<)’ in place of
‘$<’.

1.98 make.guide/Pattern Match

How Patterns Match

A target pattern is composed of a ‘%’ between a prefix and a suffix,
either or both of which may be empty. The pattern matches a file name
only if the file name starts with the prefix and ends with the suffix,
without overlap. The text between the prefix and the suffix is called
the "stem". Thus, when the pattern ‘%.o’ matches the file name
‘test.o’, the stem is ‘test’. The pattern rule dependencies are turned
into actual file names by substituting the stem for the character ‘%’.
Thus, if in the same example one of the dependencies is written as
‘%.c’, it expands to ‘test.c’.

When the target pattern does not contain a slash (and it usually does
not), directory names in the file names are removed from the file name
before it is compared with the target prefix and suffix. After the
comparison of the file name to the target pattern, the directory names,
along with the slash that ends them, are added on to the dependency
file names generated from the pattern rule’s dependency patterns and
the file name. The directories are ignored only for the purpose of
finding an implicit rule to use, not in the application of that rule.
Thus, ‘e%t’ matches the file name ‘src/eat’, with ‘src/a’ as the stem.
When dependencies are turned into file names, the directories from the
stem are added at the front, while the rest of the stem is substituted
for the ‘%’. The stem ‘src/a’ with a dependency pattern ‘c%r’ gives
the file name ‘src/car’.

1.99 make.guide/Match-Anything Rules

Match-Anything Pattern Rules

When a pattern rule’s target is just ‘%’, it matches any file name
whatever. We call these rules "match-anything" rules. They are very
useful, but it can take a lot of time for ‘make’ to think about them,
because it must consider every such rule for each file name listed

gnu:guide/make 124 / 206

either as a target or as a dependency.

Suppose the makefile mentions ‘foo.c’. For this target, ‘make’
would have to consider making it by linking an object file ‘foo.c.o’,
or by C compilation-and-linking in one step from ‘foo.c.c’, or by
Pascal compilation-and-linking from ‘foo.c.p’, and many other
possibilities.

We know these possibilities are ridiculous since ‘foo.c’ is a C
source file, not an executable. If ‘make’ did consider these
possibilities, it would ultimately reject them, because files such as
‘foo.c.o’ and ‘foo.c.p’ would not exist. But these possibilities are so
numerous that ‘make’ would run very slowly if it had to consider them.

To gain speed, we have put various constraints on the way ‘make’
considers match-anything rules. There are two different constraints
that can be applied, and each time you define a match-anything rule you
must choose one or the other for that rule.

One choice is to mark the match-anything rule as "terminal" by
defining it with a double colon. When a rule is terminal, it does not
apply unless its dependencies actually exist. Dependencies that could
be made with other implicit rules are not good enough. In other words,
no further chaining is allowed beyond a terminal rule.

For example, the built-in implicit rules for extracting sources from
RCS and SCCS files are terminal; as a result, if the file ‘foo.c,v’ does
not exist, ‘make’ will not even consider trying to make it as an
intermediate file from ‘foo.c,v.o’ or from ‘RCS/SCCS/s.foo.c,v’. RCS
and SCCS files are generally ultimate source files, which should not be
remade from any other files; therefore, ‘make’ can save time by not
looking for ways to remake them.

If you do not mark the match-anything rule as terminal, then it is
nonterminal. A nonterminal match-anything rule cannot apply to a file
name that indicates a specific type of data. A file name indicates a
specific type of data if some non-match-anything implicit rule target
matches it.

For example, the file name ‘foo.c’ matches the target for the pattern
rule ‘%.c : %.y’ (the rule to run Yacc). Regardless of whether this
rule is actually applicable (which happens only if there is a file
‘foo.y’), the fact that its target matches is enough to prevent
consideration of any nonterminal match-anything rules for the file
‘foo.c’. Thus, ‘make’ will not even consider trying to make ‘foo.c’ as
an executable file from ‘foo.c.o’, ‘foo.c.c’, ‘foo.c.p’, etc.

The motivation for this constraint is that nonterminal match-anything
rules are used for making files containing specific types of data (such
as executable files) and a file name with a recognized suffix indicates
some other specific type of data (such as a C source file).

Special built-in dummy pattern rules are provided solely to recognize
certain file names so that nonterminal match-anything rules will not be
considered. These dummy rules have no dependencies and no commands, and
they are ignored for all other purposes. For example, the built-in
implicit rule

gnu:guide/make 125 / 206

%.p :

exists to make sure that Pascal source files such as ‘foo.p’ match a
specific target pattern and thereby prevent time from being wasted
looking for ‘foo.p.o’ or ‘foo.p.c’.

Dummy pattern rules such as the one for ‘%.p’ are made for every
suffix listed as valid for use in suffix rules (see

Old-Fashioned Suffix Rules
).

1.100 make.guide/Canceling Rules

Canceling Implicit Rules

You can override a built-in implicit rule (or one you have defined
yourself) by defining a new pattern rule with the same target and
dependencies, but different commands. When the new rule is defined, the
built-in one is replaced. The new rule’s position in the sequence of
implicit rules is determined by where you write the new rule.

You can cancel a built-in implicit rule by defining a pattern rule
with the same target and dependencies, but no commands. For example,
the following would cancel the rule that runs the assembler:

%.o : %.s

1.101 make.guide/Last Resort

Defining Last-Resort Default Rules
==================================

You can define a last-resort implicit rule by writing a terminal
match-anything pattern rule with no dependencies (see

Match-Anything Rules
). This is just like any other pattern rule; the

only thing special about it is that it will match any target. So such
a rule’s commands are used for all targets and dependencies that have
no commands of their own and for which no other implicit rule applies.

For example, when testing a makefile, you might not care if the
source files contain real data, only that they exist. Then you might
do this:

%::

gnu:guide/make 126 / 206

touch $@

to cause all the source files needed (as dependencies) to be created
automatically.

You can instead define commands to be used for targets for which
there are no rules at all, even ones which don’t specify commands. You
do this by writing a rule for the target ‘.DEFAULT’. Such a rule’s
commands are used for all dependencies which do not appear as targets in
any explicit rule, and for which no implicit rule applies. Naturally,
there is no ‘.DEFAULT’ rule unless you write one.

If you use ‘.DEFAULT’ with no commands or dependencies:

.DEFAULT:

the commands previously stored for ‘.DEFAULT’ are cleared. Then ‘make’
acts as if you had never defined ‘.DEFAULT’ at all.

If you do not want a target to get the commands from a match-anything
pattern rule or ‘.DEFAULT’, but you also do not want any commands to be
run for the target, you can give it empty commands (see

Defining Empty Commands
).

You can use a last-resort rule to override part of another makefile.
See

Overriding Part of Another Makefile
.

1.102 make.guide/Suffix Rules

Old-Fashioned Suffix Rules
==========================

"Suffix rules" are the old-fashioned way of defining implicit rules
for ‘make’. Suffix rules are obsolete because pattern rules are more
general and clearer. They are supported in GNU ‘make’ for
compatibility with old makefiles. They come in two kinds:
"double-suffix" and "single-suffix".

A double-suffix rule is defined by a pair of suffixes: the target
suffix and the source suffix. It matches any file whose name ends with
the target suffix. The corresponding implicit dependency is made by
replacing the target suffix with the source suffix in the file name. A
two-suffix rule whose target and source suffixes are ‘.o’ and ‘.c’ is
equivalent to the pattern rule ‘%.o : %.c’.

A single-suffix rule is defined by a single suffix, which is the
source suffix. It matches any file name, and the corresponding implicit
dependency name is made by appending the source suffix. A single-suffix
rule whose source suffix is ‘.c’ is equivalent to the pattern rule ‘% :

gnu:guide/make 127 / 206

%.c’.

Suffix rule definitions are recognized by comparing each rule’s
target against a defined list of known suffixes. When ‘make’ sees a
rule whose target is a known suffix, this rule is considered a
single-suffix rule. When ‘make’ sees a rule whose target is two known
suffixes concatenated, this rule is taken as a double-suffix rule.

For example, ‘.c’ and ‘.o’ are both on the default list of known
suffixes. Therefore, if you define a rule whose target is ‘.c.o’,
‘make’ takes it to be a double-suffix rule with source suffix ‘.c’ and
target suffix ‘.o’. Here is the old-fashioned way to define the rule
for compiling a C source file:

.c.o:
$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

Suffix rules cannot have any dependencies of their own. If they
have any, they are treated as normal files with funny names, not as
suffix rules. Thus, the rule:

.c.o: foo.h
$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

tells how to make the file ‘.c.o’ from the dependency file ‘foo.h’, and
is not at all like the pattern rule:

%.o: %.c foo.h
$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

which tells how to make ‘.o’ files from ‘.c’ files, and makes all ‘.o’
files using this pattern rule also depend on ‘foo.h’.

Suffix rules with no commands are also meaningless. They do not
remove previous rules as do pattern rules with no commands (see

Canceling Implicit Rules
). They simply enter the suffix or pair of

suffixes concatenated as a target in the data base.

The known suffixes are simply the names of the dependencies of the
special target ‘.SUFFIXES’. You can add your own suffixes by writing a
rule for ‘.SUFFIXES’ that adds more dependencies, as in:

.SUFFIXES: .hack .win

which adds ‘.hack’ and ‘.win’ to the end of the list of suffixes.

If you wish to eliminate the default known suffixes instead of just
adding to them, write a rule for ‘.SUFFIXES’ with no dependencies. By
special dispensation, this eliminates all existing dependencies of
‘.SUFFIXES’. You can then write another rule to add the suffixes you
want. For example,

.SUFFIXES: # Delete the default suffixes

.SUFFIXES: .c .o .h # Define our suffix list

gnu:guide/make 128 / 206

The ‘-r’ or ‘--no-builtin-rules’ flag causes the default list of
suffixes to be empty.

The variable ‘SUFFIXES’ is defined to the default list of suffixes
before ‘make’ reads any makefiles. You can change the list of suffixes
with a rule for the special target ‘.SUFFIXES’, but that does not alter
this variable.

1.103 make.guide/Search Algorithm

Implicit Rule Search Algorithm
==============================

Here is the procedure ‘make’ uses for searching for an implicit rule
for a target T. This procedure is followed for each double-colon rule
with no commands, for each target of ordinary rules none of which have
commands, and for each dependency that is not the target of any rule.
It is also followed recursively for dependencies that come from implicit
rules, in the search for a chain of rules.

Suffix rules are not mentioned in this algorithm because suffix
rules are converted to equivalent pattern rules once the makefiles have
been read in.

For an archive member target of the form ‘ARCHIVE(MEMBER)’, the
following algorithm is run twice, first using the entire target name T,
and second using ‘(MEMBER)’ as the target T if the first run found no
rule.

1. Split T into a directory part, called D, and the rest, called N.
For example, if T is ‘src/foo.o’, then D is ‘src/’ and N is
‘foo.o’.

2. Make a list of all the pattern rules one of whose targets matches
T or N. If the target pattern contains a slash, it is matched
against T; otherwise, against N.

3. If any rule in that list is *not* a match-anything rule, then
remove all nonterminal match-anything rules from the list.

4. Remove from the list all rules with no commands.

5. For each pattern rule in the list:

a. Find the stem S, which is the nonempty part of T or N matched
by the ‘%’ in the target pattern.

b. Compute the dependency names by substituting S for ‘%’; if
the target pattern does not contain a slash, append D to the
front of each dependency name.

c. Test whether all the dependencies exist or ought to exist.
(If a file name is mentioned in the makefile as a target or

gnu:guide/make 129 / 206

as an explicit dependency, then we say it ought to exist.)

If all dependencies exist or ought to exist, or there are no
dependencies, then this rule applies.

6. If no pattern rule has been found so far, try harder. For each
pattern rule in the list:

a. If the rule is terminal, ignore it and go on to the next rule.

b. Compute the dependency names as before.

c. Test whether all the dependencies exist or ought to exist.

d. For each dependency that does not exist, follow this algorithm
recursively to see if the dependency can be made by an
implicit rule.

e. If all dependencies exist, ought to exist, or can be made by
implicit rules, then this rule applies.

7. If no implicit rule applies, the rule for ‘.DEFAULT’, if any,
applies. In that case, give T the same commands that ‘.DEFAULT’
has. Otherwise, there are no commands for T.

Once a rule that applies has been found, for each target pattern of
the rule other than the one that matched T or N, the ‘%’ in the pattern
is replaced with S and the resultant file name is stored until the
commands to remake the target file T are executed. After these
commands are executed, each of these stored file names are entered into
the data base and marked as having been updated and having the same
update status as the file T.

When the commands of a pattern rule are executed for T, the automatic
variables are set corresponding to the target and dependencies. See

Automatic Variables
.

1.104 make.guide/Archives

Using ‘make’ to Update Archive Files

"Archive files" are files containing named subfiles called
"members"; they are maintained with the program ‘ar’ and their main use
is as subroutine libraries for linking.

Archive Members
Archive members as targets.

gnu:guide/make 130 / 206

Archive Update
The implicit rule for archive member targets.

Archive Pitfalls
Dangers to watch out for when using archives.

Archive Suffix Rules
You can write a special kind of suffix rule

for updating archives.

1.105 make.guide/Archive Members

Archive Members as Targets
==========================

An individual member of an archive file can be used as a target or
dependency in ‘make’. You specify the member named MEMBER in archive
file ARCHIVE as follows:

ARCHIVE(MEMBER)

This construct is available only in targets and dependencies, not in
commands! Most programs that you might use in commands do not support
this syntax and cannot act directly on archive members. Only ‘ar’ and
other programs specifically designed to operate on archives can do so.
Therefore, valid commands to update an archive member target probably
must use ‘ar’. For example, this rule says to create a member ‘hack.o’
in archive ‘foolib’ by copying the file ‘hack.o’:

foolib(hack.o) : hack.o
ar cr foolib hack.o

In fact, nearly all archive member targets are updated in just this
way and there is an implicit rule to do it for you. *Note:* The ‘c’
flag to ‘ar’ is required if the archive file does not already exist.

To specify several members in the same archive, you can write all the
member names together between the parentheses. For example:

foolib(hack.o kludge.o)

is equivalent to:

foolib(hack.o) foolib(kludge.o)

You can also use shell-style wildcards in an archive member
reference. See

Using Wildcard Characters in File Names
. For example,

‘foolib(*.o)’ expands to all existing members of the ‘foolib’ archive
whose names end in ‘.o’; perhaps ‘foolib(hack.o) foolib(kludge.o)’.

gnu:guide/make 131 / 206

1.106 make.guide/Archive Update

Implicit Rule for Archive Member Targets
==

Recall that a target that looks like ‘A(M)’ stands for the member
named M in the archive file A.

When ‘make’ looks for an implicit rule for such a target, as a
special feature it considers implicit rules that match ‘(M)’, as well as
those that match the actual target ‘A(M)’.

This causes one special rule whose target is ‘(%)’ to match. This
rule updates the target ‘A(M)’ by copying the file M into the archive.
For example, it will update the archive member target ‘foo.a(bar.o)’ by
copying the *file* ‘bar.o’ into the archive ‘foo.a’ as a *member* named
‘bar.o’.

When this rule is chained with others, the result is very powerful.
Thus, ‘make "foo.a(bar.o)"’ (the quotes are needed to protect the ‘(’
and ‘)’ from being interpreted specially by the shell) in the presence
of a file ‘bar.c’ is enough to cause the following commands to be run,
even without a makefile:

cc -c bar.c -o bar.o
ar r foo.a bar.o
rm -f bar.o

Here ‘make’ has envisioned the file ‘bar.o’ as an intermediate file.
See

Chains of Implicit Rules
.

Implicit rules such as this one are written using the automatic
variable ‘$%’. See

Automatic Variables
.

An archive member name in an archive cannot contain a directory
name, but it may be useful in a makefile to pretend that it does. If
you write an archive member target ‘foo.a(dir/file.o)’, ‘make’ will
perform automatic updating with this command:

ar r foo.a dir/file.o

which has the effect of copying the file ‘dir/file.o’ into a member
named ‘file.o’. In connection with such usage, the automatic variables
‘%D’ and ‘%F’ may be useful.

Archive Symbols
How to update archive symbol directories.

gnu:guide/make 132 / 206

1.107 make.guide/Archive Symbols

Updating Archive Symbol Directories

An archive file that is used as a library usually contains a special
member named ‘__.SYMDEF’ that contains a directory of the external
symbol names defined by all the other members. After you update any
other members, you need to update ‘__.SYMDEF’ so that it will summarize
the other members properly. This is done by running the ‘ranlib’
program:

ranlib ARCHIVEFILE

Normally you would put this command in the rule for the archive file,
and make all the members of the archive file dependencies of that rule.
For example,

libfoo.a: libfoo.a(x.o) libfoo.a(y.o) ...
ranlib libfoo.a

The effect of this is to update archive members ‘x.o’, ‘y.o’, etc., and
then update the symbol directory member ‘__.SYMDEF’ by running
‘ranlib’. The rules for updating the members are not shown here; most
likely you can omit them and use the implicit rule which copies files
into the archive, as described in the preceding section.

This is not necessary when using the GNU ‘ar’ program, which updates
the ‘__.SYMDEF’ member automatically.

1.108 make.guide/Archive Pitfalls

Dangers When Using Archives
===========================

It is important to be careful when using parallel execution (the
‘-j’ switch; see

Parallel Execution
) and archives. If multiple ‘ar’

commands run at the same time on the same archive file, they will not
know about each other and can corrupt the file.

Possibly a future version of ‘make’ will provide a mechanism to
circumvent this problem by serializing all commands that operate on the
same archive file. But for the time being, you must either write your
makefiles to avoid this problem in some other way, or not use ‘-j’.

gnu:guide/make 133 / 206

1.109 make.guide/Archive Suffix Rules

Suffix Rules for Archive Files
==============================

You can write a special kind of suffix rule for dealing with archive
files. See

Suffix Rules
, for a full explanation of suffix rules.

Archive suffix rules are obsolete in GNU ‘make’, because pattern rules
for archives are a more general mechanism (see

Archive Update
). But

they are retained for compatibility with other ‘make’s.

To write a suffix rule for archives, you simply write a suffix rule
using the target suffix ‘.a’ (the usual suffix for archive files). For
example, here is the old-fashioned suffix rule to update a library
archive from C source files:

.c.a:
$(CC) $(CFLAGS) $(CPPFLAGS) -c $< -o $*.o
$(AR) r $@ $*.o
$(RM) $*.o

This works just as if you had written the pattern rule:

(%.o): %.c
$(CC) $(CFLAGS) $(CPPFLAGS) -c $< -o $*.o
$(AR) r $@ $*.o
$(RM) $*.o

In fact, this is just what ‘make’ does when it sees a suffix rule
with ‘.a’ as the target suffix. Any double-suffix rule ‘.X.a’ is
converted to a pattern rule with the target pattern ‘(%.o)’ and a
dependency pattern of ‘%.X’.

Since you might want to use ‘.a’ as the suffix for some other kind
of file, ‘make’ also converts archive suffix rules to pattern rules in
the normal way (see

Suffix Rules
). Thus a double-suffix rule ‘.X.a’

produces two pattern rules: ‘(%.o): %.X’ and ‘%.a: %.X’.

1.110 make.guide/Features

Features of GNU ‘make’

Here is a summary of the features of GNU ‘make’, for comparison with
and credit to other versions of ‘make’. We consider the features of
‘make’ in 4.2 BSD systems as a baseline. If you are concerned with

gnu:guide/make 134 / 206

writing portable makefiles, you should use only the features of ‘make’

not listed here or in See
Missing
.

Many features come from the version of ‘make’ in System V.

* The ‘VPATH’ variable and its special meaning. See

Searching Directories for Dependencies
. This feature exists in

System V ‘make’, but is undocumented. It is documented in 4.3 BSD
‘make’ (which says it mimics System V’s ‘VPATH’ feature).

* Included makefiles. See
Including Other Makefiles
. Allowing

multiple files to be included with a single directive is a GNU
extension.

* Variables are read from and communicated via the environment. See

Variables from the Environment
.

* Options passed through the variable ‘MAKEFLAGS’ to recursive
invocations of ‘make’. See

Communicating Options to a Sub-‘make’
.

* The automatic variable ‘$%’ is set to the member name in an
archive reference. See

Automatic Variables
.

* The automatic variables ‘$@’, ‘$*’, ‘$<’, ‘$%’, and ‘$?’ have
corresponding forms like ‘$(@F)’ and ‘$(@D)’. We have generalized
this to ‘$^’ as an obvious extension. See

Automatic Variables
.

* Substitution variable references. See

Basics of Variable References
.

* The command-line options ‘-b’ and ‘-m’, accepted and ignored. In
System V ‘make’, these options actually do something.

* Execution of recursive commands to run ‘make’ via the variable
‘MAKE’ even if ‘-n’, ‘-q’ or ‘-t’ is specified. See

Recursive Use of ‘make’
.

* Support for suffix ‘.a’ in suffix rules. See

gnu:guide/make 135 / 206

Archive Suffix Rules
. This feature is obsolete in GNU ‘make’,

because the general feature of rule chaining (see

Chains of Implicit Rules
) allows one pattern rule for installing

members in an archive (see
Archive Update
) to be sufficient.

* The arrangement of lines and backslash-newline combinations in
commands is retained when the commands are printed, so they appear
as they do in the makefile, except for the stripping of initial
whitespace.

The following features were inspired by various other versions of
‘make’. In some cases it is unclear exactly which versions inspired
which others.

* Pattern rules using ‘%’. This has been implemented in several
versions of ‘make’. We’re not sure who invented it first, but
it’s been spread around a bit. See

Defining and Redefining Pattern Rules
.

* Rule chaining and implicit intermediate files. This was
implemented by Stu Feldman in his version of ‘make’ for AT&T
Eighth Edition Research Unix, and later by Andrew Hume of AT&T
Bell Labs in his ‘mk’ program (where he terms it "transitive
closure"). We do not really know if we got this from either of
them or thought it up ourselves at the same time. See

Chains of Implicit Rules
.

* The automatic variable ‘$^’ containing a list of all dependencies
of the current target. We did not invent this, but we have no
idea who did. See

Automatic Variables
. The automatic variable

‘$+’ is a simple extension of ‘$^’.

* The "what if" flag (‘-W’ in GNU ‘make’) was (as far as we know)
invented by Andrew Hume in ‘mk’. See

Instead of Executing the Commands
.

* The concept of doing several things at once (parallelism) exists in
many incarnations of ‘make’ and similar programs, though not in the
System V or BSD implementations. See

Command Execution
.

* Modified variable references using pattern substitution come from
SunOS 4. See

gnu:guide/make 136 / 206

Basics of Variable References
. This functionality

was provided in GNU ‘make’ by the ‘patsubst’ function before the
alternate syntax was implemented for compatibility with SunOS 4.
It is not altogether clear who inspired whom, since GNU ‘make’ had
‘patsubst’ before SunOS 4 was released.

* The special significance of ‘+’ characters preceding command lines
(see

Instead of Executing the Commands
) is mandated by ‘IEEE

Standard 1003.2-1992’ (POSIX.2).

* The ‘+=’ syntax to append to the value of a variable comes from
SunOS 4 ‘make’. See

Appending More Text to Variables
.

* The syntax ‘ARCHIVE(MEM1 MEM2...)’ to list multiple members in a
single archive file comes from SunOS 4 ‘make’. See

Archive Members
.

* The ‘-include’ directive to include makefiles with no error for a
nonexistent file comes from SunOS 4 ‘make’. (But note that SunOS 4
‘make’ does not allow multiple makefiles to be specified in one
‘-include’ directive.)

The remaining features are inventions new in GNU ‘make’:

* Use the ‘-v’ or ‘--version’ option to print version and copyright
information.

* Use the ‘-h’ or ‘--help’ option to summarize the options to ‘make’.

* Simply-expanded variables. See
The Two Flavors of Variables
.

* Pass command-line variable assignments automatically through the
variable ‘MAKE’ to recursive ‘make’ invocations. See

Recursive Use of ‘make’
.

* Use the ‘-C’ or ‘--directory’ command option to change directory.
See

Summary of Options
.

* Make verbatim variable definitions with ‘define’. See

Defining Variables Verbatim
.

* Declare phony targets with the special target ‘.PHONY’.

gnu:guide/make 137 / 206

Andrew Hume of AT&T Bell Labs implemented a similar feature with a
different syntax in his ‘mk’ program. This seems to be a case of
parallel discovery. See

Phony Targets
.

* Manipulate text by calling functions. See

Functions for Transforming Text
.

* Use the ‘-o’ or ‘--old-file’ option to pretend a file’s
modification-time is old. See

Avoiding Recompilation of Some Files
.

* Conditional execution.

This feature has been implemented numerous times in various
versions of ‘make’; it seems a natural extension derived from the
features of the C preprocessor and similar macro languages and is
not a revolutionary concept. See

Conditional Parts of Makefiles
.

* Specify a search path for included makefiles. See

Including Other Makefiles
.

* Specify extra makefiles to read with an environment variable. See

The Variable ‘MAKEFILES’
.

* Strip leading sequences of ‘./’ from file names, so that ‘./FILE’
and ‘FILE’ are considered to be the same file.

* Use a special search method for library dependencies written in the
form ‘-lNAME’. See

Directory Search for Link Libraries
.

* Allow suffixes for suffix rules (see
Old-Fashioned Suffix Rules
)

to contain any characters. In other versions of ‘make’, they must
begin with ‘.’ and not contain any ‘/’ characters.

* Keep track of the current level of ‘make’ recursion using the
variable ‘MAKELEVEL’. See

Recursive Use of ‘make’
.

* Specify static pattern rules. See

gnu:guide/make 138 / 206

Static Pattern Rules
.

* Provide selective ‘vpath’ search. See

Searching Directories for Dependencies
.

* Provide computed variable references. See

Basics of Variable References
.

* Update makefiles. See
How Makefiles Are Remade
. System V ‘make’

has a very, very limited form of this functionality in that it
will check out SCCS files for makefiles.

* Various new built-in implicit rules. See

Catalogue of Implicit Rules
.

* The built-in variable ‘MAKE_VERSION’ gives the version number of
‘make’.

1.111 make.guide/Missing

Incompatibilities and Missing Features

The ‘make’ programs in various other systems support a few features
that are not implemented in GNU ‘make’. The POSIX.2 standard (‘IEEE
Standard 1003.2-1992’) which specifies ‘make’ does not require any of
these features.

* A target of the form ‘FILE((ENTRY))’ stands for a member of
archive file FILE. The member is chosen, not by name, but by
being an object file which defines the linker symbol ENTRY.

This feature was not put into GNU ‘make’ because of the
nonmodularity of putting knowledge into ‘make’ of the internal
format of archive file symbol tables. See

Updating Archive Symbol Directories
.

* Suffixes (used in suffix rules) that end with the character ‘~’
have a special meaning to System V ‘make’; they refer to the SCCS
file that corresponds to the file one would get without the ‘~’.
For example, the suffix rule ‘.c~.o’ would make the file ‘N.o’ from
the SCCS file ‘s.N.c’. For complete coverage, a whole series of

gnu:guide/make 139 / 206

such suffix rules is required. See
Old-Fashioned Suffix Rules
.

In GNU ‘make’, this entire series of cases is handled by two
pattern rules for extraction from SCCS, in combination with the
general feature of rule chaining. See

Chains of Implicit Rules
.

* In System V ‘make’, the string ‘$$@’ has the strange meaning that,
in the dependencies of a rule with multiple targets, it stands for
the particular target that is being processed.

This is not defined in GNU ‘make’ because ‘$$’ should always stand
for an ordinary ‘$’.

It is possible to get this functionality through the use of static
pattern rules (see

Static Pattern Rules
). The System V ‘make’

rule:

$(targets): $$@.o lib.a

can be replaced with the GNU ‘make’ static pattern rule:

$(targets): %: %.o lib.a

* In System V and 4.3 BSD ‘make’, files found by ‘VPATH’ search (see

Searching Directories for Dependencies
) have their names changed

inside command strings. We feel it is much cleaner to always use
automatic variables and thus make this feature obsolete.

* In some Unix ‘make’s, the automatic variable ‘$*’ appearing in the
dependencies of a rule has the amazingly strange "feature" of expanding to ←↩

the full name of the

target of that rule. We cannot imagine what went on in the
minds of Unix ‘make’ developers to do this; it is utterly
inconsistent with the normal definition of ‘$*’.

* In some Unix ‘make’s, implicit rule search (see

Using Implicit Rules
) is apparently done for *all* targets, not

just those without commands. This means you can do:

foo.o:
cc -c foo.c

and Unix ‘make’ will intuit that ‘foo.o’ depends on ‘foo.c’.

We feel that such usage is broken. The dependency properties of
‘make’ are well-defined (for GNU ‘make’, at least), and doing such
a thing simply does not fit the model.

gnu:guide/make 140 / 206

* GNU ‘make’ does not include any built-in implicit rules for
compiling or preprocessing EFL programs. If we hear of anyone who
is using EFL, we will gladly add them.

* It appears that in SVR4 ‘make’, a suffix rule can be specified with
no commands, and it is treated as if it had empty commands (see

Empty Commands
). For example:

.c.a:

will override the built-in ‘.c.a’ suffix rule.

We feel that it is cleaner for a rule without commands to always
simply add to the dependency list for the target. The above
example can be easily rewritten to get the desired behavior in GNU
‘make’:

.c.a: ;

* Some versions of ‘make’ invoke the shell with the ‘-e’ flag,
except under ‘-k’ (see

Testing the Compilation of a Program
). The

‘-e’ flag tells the shell to exit as soon as any program it runs
returns a nonzero status. We feel it is cleaner to write each
shell command line to stand on its own and not require this
special treatment.

1.112 make.guide/Makefile Conventions

Makefile Conventions

This chapter describes conventions for writing the Makefiles for GNU
programs.

Makefile Basics

Utilities in Makefiles

Standard Targets

Command Variables

Directory Variables

gnu:guide/make 141 / 206

1.113 make.guide/Makefile Basics

General Conventions for Makefiles
=================================

Every Makefile should contain this line:

SHELL = /bin/sh

to avoid trouble on systems where the ‘SHELL’ variable might be
inherited from the environment. (This is never a problem with GNU
‘make’.)

Different ‘make’ programs have incompatible suffix lists and
implicit rules, and this sometimes creates confusion or misbehavior. So
it is a good idea to set the suffix list explicitly using only the
suffixes you need in the particular Makefile, like this:

.SUFFIXES:

.SUFFIXES: .c .o

The first line clears out the suffix list, the second introduces all
suffixes which may be subject to implicit rules in this Makefile.

Don’t assume that ‘.’ is in the path for command execution. When
you need to run programs that are a part of your package during the
make, please make sure that it uses ‘./’ if the program is built as
part of the make or ‘$(srcdir)/’ if the file is an unchanging part of
the source code. Without one of these prefixes, the current search
path is used.

The distinction between ‘./’ and ‘$(srcdir)/’ is important when
using the ‘--srcdir’ option to ‘configure’. A rule of the form:

foo.1 : foo.man sedscript
sed -e sedscript foo.man > foo.1

will fail when the current directory is not the source directory,
because ‘foo.man’ and ‘sedscript’ are not in the current directory.

When using GNU ‘make’, relying on ‘VPATH’ to find the source file
will work in the case where there is a single dependency file, since
the ‘make’ automatic variable ‘$<’ will represent the source file
wherever it is. (Many versions of ‘make’ set ‘$<’ only in implicit
rules.) A makefile target like

foo.o : bar.c
$(CC) -I. -I$(srcdir) $(CFLAGS) -c bar.c -o foo.o

should instead be written as

foo.o : bar.c
$(CC) -I. -I$(srcdir) $(CFLAGS) -c $< -o $@

in order to allow ‘VPATH’ to work correctly. When the target has
multiple dependencies, using an explicit ‘$(srcdir)’ is the easiest way

gnu:guide/make 142 / 206

to make the rule work well. For example, the target above for ‘foo.1’
is best written as:

foo.1 : foo.man sedscript
sed -e $(srcdir)/sedscript $(srcdir)/foo.man > $@

1.114 make.guide/Utilities in Makefiles

Utilities in Makefiles
======================

Write the Makefile commands (and any shell scripts, such as
‘configure’) to run in ‘sh’, not in ‘csh’. Don’t use any special
features of ‘ksh’ or ‘bash’.

The ‘configure’ script and the Makefile rules for building and
installation should not use any utilities directly except these:

cat cmp cp echo egrep expr grep
ln mkdir mv pwd rm rmdir sed test touch

Stick to the generally supported options for these programs. For
example, don’t use ‘mkdir -p’, convenient as it may be, because most
systems don’t support it.

The Makefile rules for building and installation can also use
compilers and related programs, but should do so via ‘make’ variables
so that the user can substitute alternatives. Here are some of the
programs we mean:

ar bison cc flex install ld lex
make makeinfo ranlib texi2dvi yacc

Use the following ‘make’ variables:

$(AR) $(BISON) $(CC) $(FLEX) $(INSTALL) $(LD) $(LEX)
$(MAKE) $(MAKEINFO) $(RANLIB) $(TEXI2DVI) $(YACC)

When you use ‘ranlib’, you should make sure nothing bad happens if
the system does not have ‘ranlib’. Arrange to ignore an error from
that command, and print a message before the command to tell the user
that failure of the ‘ranlib’ command does not mean a problem.

If you use symbolic links, you should implement a fallback for
systems that don’t have symbolic links.

It is ok to use other utilities in Makefile portions (or scripts)
intended only for particular systems where you know those utilities to
exist.

gnu:guide/make 143 / 206

1.115 make.guide/Standard Targets

Standard Targets for Users
==========================

All GNU programs should have the following targets in their
Makefiles:

‘all’
Compile the entire program. This should be the default target.
This target need not rebuild any documentation files; Info files
should normally be included in the distribution, and DVI files
should be made only when explicitly asked for.

‘install’
Compile the program and copy the executables, libraries, and so on
to the file names where they should reside for actual use. If
there is a simple test to verify that a program is properly
installed, this target should run that test.

The commands should create all the directories in which files are
to be installed, if they don’t already exist. This includes the
directories specified as the values of the variables ‘prefix’ and
‘exec_prefix’, as well as all subdirectories that are needed. One
way to do this is by means of an ‘installdirs’ target as described
below.

Use ‘-’ before any command for installing a man page, so that
‘make’ will ignore any errors. This is in case there are systems
that don’t have the Unix man page documentation system installed.

The way to install Info files is to copy them into ‘$(infodir)’
with ‘$(INSTALL_DATA)’ (see

Command Variables
), and then run the

‘install-info’ program if it is present. ‘install-info’ is a
script that edits the Info ‘dir’ file to add or update the menu
entry for the given Info file; it will be part of the Texinfo
package. Here is a sample rule to install an Info file:

$(infodir)/foo.info: foo.info
There may be a newer info file in . than in srcdir.

-if test -f foo.info; then d=.; \
else d=$(srcdir); fi; \
$(INSTALL_DATA) $$d/foo.info $@; \

Run install-info only if it exists.
Use ‘if’ instead of just prepending ‘-’ to the
line so we notice real errors from install-info.
We use ‘$(SHELL) -c’ because some shells do not
fail gracefully when there is an unknown command.

if $(SHELL) -c ’install-info --version’ \
>/dev/null 2>&1; then \
install-info --infodir=$(infodir) $$d/foo.info; \

else true; fi

‘uninstall’

gnu:guide/make 144 / 206

Delete all the installed files that the ‘install’ target would
create (but not the noninstalled files such as ‘make all’ would
create).

‘clean’
Delete all files from the current directory that are normally
created by building the program. Don’t delete the files that
record the configuration. Also preserve files that could be made
by building, but normally aren’t because the distribution comes
with them.

Delete ‘.dvi’ files here if they are not part of the distribution.

‘distclean’
Delete all files from the current directory that are created by
configuring or building the program. If you have unpacked the
source and built the program without creating any other files,
‘make distclean’ should leave only the files that were in the
distribution.

‘mostlyclean’
Like ‘clean’, but may refrain from deleting a few files that people
normally don’t want to recompile. For example, the ‘mostlyclean’
target for GCC does not delete ‘libgcc.a’, because recompiling it
is rarely necessary and takes a lot of time.

‘realclean’
Delete everything from the current directory that can be
reconstructed with this Makefile. This typically includes
everything deleted by ‘distclean’, plus more: C source files
produced by Bison, tags tables, Info files, and so on.

One exception, however: ‘make realclean’ should not delete
‘configure’ even if ‘configure’ can be remade using a rule in the
Makefile. More generally, ‘make realclean’ should not delete
anything that needs to exist in order to run ‘configure’ and then
begin to build the program.

‘TAGS’
Update a tags table for this program.

‘info’
Generate any Info files needed. The best way to write the rules
is as follows:

info: foo.info

foo.info: foo.texi chap1.texi chap2.texi
$(MAKEINFO) $(srcdir)/foo.texi

You must define the variable ‘MAKEINFO’ in the Makefile. It should
run the ‘makeinfo’ program, which is part of the Texinfo
distribution.

‘dvi’
Generate DVI files for all TeXinfo documentation. For example:

gnu:guide/make 145 / 206

dvi: foo.dvi

foo.dvi: foo.texi chap1.texi chap2.texi
$(TEXI2DVI) $(srcdir)/foo.texi

You must define the variable ‘TEXI2DVI’ in the Makefile. It should
run the program ‘texi2dvi’, which is part of the Texinfo
distribution. Alternatively, write just the dependencies, and
allow GNU Make to provide the command.

‘dist’
Create a distribution tar file for this program. The tar file
should be set up so that the file names in the tar file start with
a subdirectory name which is the name of the package it is a
distribution for. This name can include the version number.

For example, the distribution tar file of GCC version 1.40 unpacks
into a subdirectory named ‘gcc-1.40’.

The easiest way to do this is to create a subdirectory
appropriately named, use ‘ln’ or ‘cp’ to install the proper files
in it, and then ‘tar’ that subdirectory.

The ‘dist’ target should explicitly depend on all non-source files
that are in the distribution, to make sure they are up to date in
the distribution. See Making Releases.

‘check’
Perform self-tests (if any). The user must build the program
before running the tests, but need not install the program; you
should write the self-tests so that they work when the program is
built but not installed.

The following targets are suggested as conventional names, for
programs in which they are useful.

‘installcheck’
Perform installation tests (if any). The user must build and
install the program before running the tests. You should not
assume that ‘$(bindir)’ is in the search path.

‘installdirs’
It’s useful to add a target named ‘installdirs’ to create the
directories where files are installed, and their parent
directories. There is a script called ‘mkinstalldirs’ which is
convenient for this; find it in the Texinfo package.You can use a
rule like this:

Make sure all installation directories (e.g. $(bindir))
actually exist by making them if necessary.
installdirs: mkinstalldirs

$(srcdir)/mkinstalldirs $(bindir) $(datadir) \
$(libdir) $(infodir) \
$(mandir)

gnu:guide/make 146 / 206

1.116 make.guide/Command Variables

Variables for Specifying Commands
=================================

Makefiles should provide variables for overriding certain commands,
options, and so on.

In particular, you should run most utility programs via variables.
Thus, if you use Bison, have a variable named ‘BISON’ whose default
value is set with ‘BISON = bison’, and refer to it with ‘$(BISON)’
whenever you need to use Bison.

File management utilities such as ‘ln’, ‘rm’, ‘mv’, and so on, need
not be referred to through variables in this way, since users don’t
need to replace them with other programs.

Each program-name variable should come with an options variable that
is used to supply options to the program. Append ‘FLAGS’ to the
program-name variable name to get the options variable name--for
example, ‘BISONFLAGS’. (The name ‘CFLAGS’ is an exception to this
rule, but we keep it because it is standard.) Use ‘CPPFLAGS’ in any
compilation command that runs the preprocessor, and use ‘LDFLAGS’ in
any compilation command that does linking as well as in any direct use
of ‘ld’.

If there are C compiler options that *must* be used for proper
compilation of certain files, do not include them in ‘CFLAGS’. Users
expect to be able to specify ‘CFLAGS’ freely themselves. Instead,
arrange to pass the necessary options to the C compiler independently
of ‘CFLAGS’, by writing them explicitly in the compilation commands or
by defining an implicit rule, like this:

CFLAGS = -g
ALL_CFLAGS = -I. $(CFLAGS)
.c.o:

$(CC) -c $(CPPFLAGS) $(ALL_CFLAGS) $<

Do include the ‘-g’ option in ‘CFLAGS’, because that is not

required for proper compilation. You can consider it a default that
is only recommended. If the package is set up so that it is compiled
with GCC by default, then you might as well include ‘-O’ in the default
value of ‘CFLAGS’ as well.

Put ‘CFLAGS’ last in the compilation command, after other variables
containing compiler options, so the user can use ‘CFLAGS’ to override
the others.

Every Makefile should define the variable ‘INSTALL’, which is the
basic command for installing a file into the system.

Every Makefile should also define the variables ‘INSTALL_PROGRAM’
and ‘INSTALL_DATA’. (The default for each of these should be
‘$(INSTALL)’.) Then it should use those variables as the commands for
actual installation, for executables and nonexecutables respectively.
Use these variables as follows:

gnu:guide/make 147 / 206

$(INSTALL_PROGRAM) foo $(bindir)/foo
$(INSTALL_DATA) libfoo.a $(libdir)/libfoo.a

Always use a file name, not a directory name, as the second argument of
the installation commands. Use a separate command for each file to be
installed.

1.117 make.guide/Directory Variables

Variables for Installation Directories
======================================

Installation directories should always be named by variables, so it
is easy to install in a nonstandard place. The standard names for these
variables are as follows.

These two variables set the root for the installation. All the other
installation directories should be subdirectories of one of these two,
and nothing should be directly installed into these two directories.

‘prefix’
A prefix used in constructing the default values of the variables
listed below. The default value of ‘prefix’ should be ‘/usr/local’
(at least for now).

‘exec_prefix’
A prefix used in constructing the default values of some of the
variables listed below. The default value of ‘exec_prefix’ should
be ‘$(prefix)’.

Generally, ‘$(exec_prefix)’ is used for directories that contain
machine-specific files (such as executables and subroutine
libraries), while ‘$(prefix)’ is used directly for other
directories.

Executable programs are installed in one of the following
directories.

‘bindir’
The directory for installing executable programs that users can
run. This should normally be ‘/usr/local/bin’, but write it as
‘$(exec_prefix)/bin’.

‘sbindir’
The directory for installing executable programs that can be run
from the shell, but are only generally useful to system
administrators. This should normally be ‘/usr/local/sbin’, but
write it as ‘$(exec_prefix)/sbin’.

‘libexecdir’
The directory for installing executable programs to be run by other
programs rather than by users. This directory should normally be
‘/usr/local/libexec’, but write it as ‘$(exec_prefix)/libexec’.

gnu:guide/make 148 / 206

Data files used by the program during its execution are divided into
categories in two ways.

* Some files are normally modified by programs; others are never
normally modified (though users may edit some of these).

* Some files are architecture-independent and can be shared by all
machines at a site; some are architecture-dependent and can be
shared only by machines of the same kind and operating system;
others may never be shared between two machines.

This makes for six different possibilities. However, we want to
discourage the use of architecture-dependent files, aside from of object
files and libraries. It is much cleaner to make other data files
architecture-independent, and it is generally not hard.

Therefore, here are the variables makefiles should use to specify
directories:

‘datadir’
The directory for installing read-only architecture independent
data files. This should normally be ‘/usr/local/share’, but write
it as ‘$(prefix)/share’. As a special exception, see ‘$(infodir)’
and ‘$(includedir)’ below.

‘sysconfdir’
The directory for installing read-only data files that pertain to a
single machine-that is to say, files for configuring a host.
Mailer and network configuration files, ‘/etc/passwd’, and so
forth belong here. All the files in this directory should be
ordinary ASCII text files. This directory should normally be
‘/usr/local/etc’, but write it as ‘$(prefix)/etc’.

Do not install executables in this directory (they probably belong
in ‘$(libexecdir)’ or ‘$(sbindir))’. Also do not install files
that are modified in the normal course of their use (programs
whose purpose is to change the configuration of the system
excluded). Those probably belong in ‘$(localstatedir)’.

‘sharedstatedir’
The directory for installing architecture-independent data files
which the programs modify while they run. This should normally be
‘/usr/local/com’, but write it as ‘$(prefix)/com’.

‘localstatedir’
The directory for installing data files which the programs modify
while they run, and that pertain to one specific machine. Users
should never need to modify files in this directory to configure
the package’s operation; put such configuration information in
separate files that go in ‘datadir’ or ‘$(sysconfdir)’.
‘$(localstatedir)’ should normally be ‘/usr/local/var’, but write
it as ‘$(prefix)/var’.

‘libdir’
The directory for object files and libraries of object code. Do
not install executables here, they probably belong in

gnu:guide/make 149 / 206

‘$(libexecdir)’ instead. The value of ‘libdir’ should normally be
‘/usr/local/lib’, but write it as ‘$(exec_prefix)/lib’.

‘infodir’
The directory for installing the Info files for this package. By
default, it should be ‘/usr/local/info’, but it should be written
as ‘$(prefix)/info’.

‘includedir’
The directory for installing header files to be included by user
programs with the C ‘#include’ preprocessor directive. This
should normally be ‘/usr/local/include’, but write it as
‘$(prefix)/include’.

Most compilers other than GCC do not look for header files in
‘/usr/local/include’. So installing the header files this way is
only useful with GCC. Sometimes this is not a problem because some
libraries are only really intended to work with GCC. But some
libraries are intended to work with other compilers. They should
install their header files in two places, one specified by
‘includedir’ and one specified by ‘oldincludedir’.

‘oldincludedir’
The directory for installing ‘#include’ header files for use with
compilers other than GCC. This should normally be ‘/usr/include’.

The Makefile commands should check whether the value of
‘oldincludedir’ is empty. If it is, they should not try to use
it; they should cancel the second installation of the header files.

A package should not replace an existing header in this directory
unless the header came from the same package. Thus, if your Foo
package provides a header file ‘foo.h’, then it should install the
header file in the ‘oldincludedir’ directory if either (1) there
is no ‘foo.h’ there or (2) the ‘foo.h’ that exists came from the
Foo package.

To tell whether ‘foo.h’ came from the Foo package, put a magic
string in the file--part of a comment--and grep for that string.

Unix-style man pages are installed in one of the following:

‘mandir’
The directory for installing the man pages (if any) for this
package. It should include the suffix for the proper section of
the manual--usually ‘1’ for a utility. It will normally be
‘/usr/local/man/man1’, but you should write it as
‘$(prefix)/man/man1’.

‘man1dir’
The directory for installing section 1 man pages.

‘man2dir’
The directory for installing section 2 man pages.

‘...’
Use these names instead of ‘mandir’ if the package needs to

gnu:guide/make 150 / 206

install man pages in more than one section of the manual.

*Don’t make the primary documentation for any GNU software be a
man page. Write a manual in Texinfo instead. Man pages are just
for the sake of people running GNU software on Unix, which is a
secondary application only.*

‘manext’
The file name extension for the installed man page. This should
contain a period followed by the appropriate digit; it should
normally be ‘.1’.

‘man1ext’
The file name extension for installed section 1 man pages.

‘man2ext’
The file name extension for installed section 2 man pages.

‘...’
Use these names instead of ‘manext’ if the package needs to
install man pages in more than one section of the manual.

And finally, you should set the following variable:

‘srcdir’
The directory for the sources being compiled. The value of this
variable is normally inserted by the ‘configure’ shell script.

For example:

Common prefix for installation directories.
NOTE: This directory must exist when you start the install.
prefix = /usr/local
exec_prefix = $(prefix)
Where to put the executable for the command ‘gcc’.
bindir = $(exec_prefix)/bin
Where to put the directories used by the compiler.
libexecdir = $(exec_prefix)/libexec
Where to put the Info files.
infodir = $(prefix)/info

If your program installs a large number of files into one of the
standard user-specified directories, it might be useful to group them
into a subdirectory particular to that program. If you do this, you
should write the ‘install’ rule to create these subdirectories.

Do not expect the user to include the subdirectory name in the value
of any of the variables listed above. The idea of having a uniform set
of variable names for installation directories is to enable the user to
specify the exact same values for several different GNU packages. In
order for this to be useful, all the packages must be designed so that
they will work sensibly when the user does so.

gnu:guide/make 151 / 206

1.118 make.guide/Quick Reference

Quick Reference

This appendix summarizes the directives, text manipulation functions,
and special variables which GNU ‘make’ understands. See

Special Targets
, See
Catalogue of Implicit Rules
, and See

Summary of Options
, for other summaries.

Here is a summary of the directives GNU ‘make’ recognizes:

‘define VARIABLE’
‘endef’

Define a multi-line, recursively-expanded variable.
See

Sequences
.

‘ifdef VARIABLE’
‘ifndef VARIABLE’
‘ifeq (A,B)’
‘ifeq "A" "B"’
‘ifeq ’A’ ’B’’
‘ifneq (A,B)’
‘ifneq "A" "B"’
‘ifneq ’A’ ’B’’
‘else’
‘endif’

Conditionally evaluate part of the makefile.
See

Conditionals
.

‘include FILE’
Include another makefile.
See

Including Other Makefiles
.

‘override VARIABLE = VALUE’
‘override VARIABLE := VALUE’
‘override VARIABLE += VALUE’
‘override define VARIABLE’
‘endef’

Define a variable, overriding any previous definition, even one
from the command line.
See

The ‘override’ Directive
.

gnu:guide/make 152 / 206

‘export’
Tell ‘make’ to export all variables to child processes by default.
See

Communicating Variables to a Sub-‘make’
.

‘export VARIABLE’
‘export VARIABLE = VALUE’
‘export VARIABLE := VALUE’
‘export VARIABLE += VALUE’
‘unexport VARIABLE’

Tell ‘make’ whether or not to export a particular variable to child
processes.
See

Communicating Variables to a Sub-‘make’
.

‘vpath PATTERN PATH’
Specify a search path for files matching a ‘%’ pattern.
See

The ‘vpath’ Directive
.

‘vpath PATTERN’
Remove all search paths previously specified for PATTERN.

‘vpath’
Remove all search paths previously specified in any ‘vpath’
directive.

Here is a summary of the text manipulation functions (see
Functions
):

‘$(subst FROM,TO,TEXT)’
Replace FROM with TO in TEXT.
See

Functions for String Substitution and Analysis
.

‘$(patsubst PATTERN,REPLACEMENT,TEXT)’
Replace words matching PATTERN with REPLACEMENT in TEXT.
See

Functions for String Substitution and Analysis
.

‘$(strip STRING)’
Remove excess whitespace characters from STRING.
See

Functions for String Substitution and Analysis
.

‘$(findstring FIND,TEXT)’
Locate FIND in TEXT.
See

Functions for String Substitution and Analysis

gnu:guide/make 153 / 206

.

‘$(filter PATTERN...,TEXT)’
Select words in TEXT that match one of the PATTERN words.
See

Functions for String Substitution and Analysis
.

‘$(filter-out PATTERN...,TEXT)’
Select words in TEXT that *do not* match any of the PATTERN words.
See

Functions for String Substitution and Analysis
.

‘$(sort LIST)’
Sort the words in LIST lexicographically, removing duplicates.
See

Functions for String Substitution and Analysis
.

‘$(dir NAMES...)’
Extract the directory part of each file name.
See

Functions for File Names
.

‘$(notdir NAMES...)’
Extract the non-directory part of each file name.
See

Functions for File Names
.

‘$(suffix NAMES...)’
Extract the suffix (the last ‘.’ and following characters) of each
file name.
See

Functions for File Names
.

‘$(basename NAMES...)’
Extract the base name (name without suffix) of each file name.
See

Functions for File Names
.

‘$(addsuffix SUFFIX,NAMES...)’
Append SUFFIX to each word in NAMES.
See

Functions for File Names
.

‘$(addprefix PREFIX,NAMES...)’
Prepend PREFIX to each word in NAMES.
See

Functions for File Names
.

gnu:guide/make 154 / 206

‘$(join LIST1,LIST2)’
Join two parallel lists of words.
See

Functions for File Names
.

‘$(word N,TEXT)’
Extract the Nth word (one-origin) of TEXT.
See

Functions for File Names
.

‘$(words TEXT)’
Count the number of words in TEXT.
See

Functions for File Names
.

‘$(firstword NAMES...)’
Extract the first word of NAMES.
See

Functions for File Names
.

‘$(wildcard PATTERN...)’
Find file names matching a shell file name pattern (*not* a ‘%’
pattern).
See

The Function ‘wildcard’
.

‘$(shell COMMAND)’
Execute a shell command and return its output.
See

The ‘shell’ Function
.

‘$(origin VARIABLE)’
Return a string describing how the ‘make’ variable VARIABLE was
defined.
See

The ‘origin’ Function
.

‘$(foreach VAR,WORDS,TEXT)’
Evaluate TEXT with VAR bound to each word in WORDS, and
concatenate the results.
See

The ‘foreach’ Function
.

Here is a summary of the automatic variables. See

Automatic Variables
, for full information.

‘$@’

gnu:guide/make 155 / 206

The file name of the target.

‘$%’
The target member name, when the target is an archive member.

‘$<’
The name of the first dependency.

‘$?’
The names of all the dependencies that are newer than the target,
with spaces between them. For dependencies which are archive
members, only the member named is used (see

Archives
).

‘$^’
‘$+’

The names of all the dependencies, with spaces between them. For
dependencies which are archive members, only the member named is
used (see

Archives
). The value of ‘$^’ omits duplicate

dependencies, while ‘$+’ retains them and preserves their order.

‘$*’
The stem with which an implicit rule matches (see

How Patterns Match
).

‘$(@D)’
‘$(@F)’

The directory part and the file-within-directory part of ‘$@’.

‘$(*D)’
‘$(*F)’

The directory part and the file-within-directory part of ‘$*’.

‘$(%D)’
‘$(%F)’

The directory part and the file-within-directory part of ‘$%’.

‘$(<D)’
‘$(<F)’

The directory part and the file-within-directory part of ‘$<’.

‘$(^D)’
‘$(^F)’

The directory part and the file-within-directory part of ‘$^’.

‘$(+D)’
‘$(+F)’

The directory part and the file-within-directory part of ‘$+’.

‘$(?D)’
‘$(?F)’

The directory part and the file-within-directory part of ‘$?’.

gnu:guide/make 156 / 206

These variables are used specially by GNU ‘make’:

‘MAKEFILES’
Makefiles to be read on every invocation of ‘make’.
See

The Variable ‘MAKEFILES’
.

‘VPATH’
Directory search path for files not found in the current directory.
See

‘VPATH’ Search Path for All Dependencies
.

‘SHELL’
The name of the system default command interpreter, usually
‘/bin/sh’. You can set ‘SHELL’ in the makefile to change the
shell used to run commands. See

Command Execution
.

‘MAKE’
The name with which ‘make’ was invoked. Using this variable in
commands has special meaning. See

How the ‘MAKE’ Variable Works
.

‘MAKELEVEL’
The number of levels of recursion (sub-‘make’s).
See

Variables-Recursion
.

‘MAKEFLAGS’
The flags given to ‘make’. You can set this in the environment or
a makefile to set flags.
See

Communicating Options to a Sub-‘make’
.

‘SUFFIXES’
The default list of suffixes before ‘make’ reads any makefiles.

1.119 make.guide/Complex Makefile

Complex Makefile Example

Here is the makefile for the GNU ‘tar’ program. This is a
moderately complex makefile.

Because it is the first target, the default goal is ‘all’. An

gnu:guide/make 157 / 206

interesting feature of this makefile is that ‘testpad.h’ is a source
file automatically created by the ‘testpad’ program, itself compiled
from ‘testpad.c’.

If you type ‘make’ or ‘make all’, then ‘make’ creates the ‘tar’
executable, the ‘rmt’ daemon that provides remote tape access, and the
‘tar.info’ Info file.

If you type ‘make install’, then ‘make’ not only creates ‘tar’,
‘rmt’, and ‘tar.info’, but also installs them.

If you type ‘make clean’, then ‘make’ removes the ‘.o’ files, and
the ‘tar’, ‘rmt’, ‘testpad’, ‘testpad.h’, and ‘core’ files.

If you type ‘make distclean’, then ‘make’ not only removes the same
files as does ‘make clean’ but also the ‘TAGS’, ‘Makefile’, and
‘config.status’ files. (Although it is not evident, this makefile (and
‘config.status’) is generated by the user with the ‘configure’ program,
which is provided in the ‘tar’ distribution, but is not shown here.)

If you type ‘make realclean’, then ‘make’ removes the same files as
does ‘make distclean’ and also removes the Info files generated from
‘tar.texinfo’.

In addition, there are targets ‘shar’ and ‘dist’ that create
distribution kits.

Generated automatically from Makefile.in by configure.
Un*x Makefile for GNU tar program.
Copyright (C) 1991 Free Software Foundation, Inc.

This program is free software; you can redistribute
it and/or modify it under the terms of the GNU
General Public License ...
...
...

SHELL = /bin/sh

Start of system configuration section.

srcdir = .

If you use gcc, you should either run the
fixincludes script that comes with it or else use
gcc with the -traditional option. Otherwise ioctl
calls will be compiled incorrectly on some systems.
CC = gcc -O
YACC = bison -y
INSTALL = /usr/local/bin/install -c
INSTALLDATA = /usr/local/bin/install -c -m 644

Things you might add to DEFS:
-DSTDC_HEADERS If you have ANSI C headers and
libraries.
-DPOSIX If you have POSIX.1 headers and
libraries.

gnu:guide/make 158 / 206

-DBSD42 If you have sys/dir.h (unless
you use -DPOSIX), sys/file.h,
and st_blocks in ‘struct stat’.
-DUSG If you have System V/ANSI C
string and memory functions
and headers, sys/sysmacros.h,
fcntl.h, getcwd, no valloc,
and ndir.h (unless
you use -DDIRENT).
-DNO_MEMORY_H If USG or STDC_HEADERS but do not
include memory.h.
-DDIRENT If USG and you have dirent.h
instead of ndir.h.
-DSIGTYPE=int If your signal handlers
return int, not void.
-DNO_MTIO If you lack sys/mtio.h
(magtape ioctls).
-DNO_REMOTE If you do not have a remote shell
or rexec.
-DUSE_REXEC To use rexec for remote tape
operations instead of
forking rsh or remsh.
-DVPRINTF_MISSING If you lack vprintf function
(but have _doprnt).
-DDOPRNT_MISSING If you lack _doprnt function.
Also need to define
-DVPRINTF_MISSING.
-DFTIME_MISSING If you lack ftime system call.
-DSTRSTR_MISSING If you lack strstr function.
-DVALLOC_MISSING If you lack valloc function.
-DMKDIR_MISSING If you lack mkdir and
rmdir system calls.
-DRENAME_MISSING If you lack rename system call.
-DFTRUNCATE_MISSING If you lack ftruncate
system call.
-DV7 On Version 7 Unix (not
tested in a long time).
-DEMUL_OPEN3 If you lack a 3-argument version
of open, and want to emulate it
with system calls you do have.
-DNO_OPEN3 If you lack the 3-argument open
and want to disable the tar -k
option instead of emulating open.
-DXENIX If you have sys/inode.h
and need it 94 to be included.

DEFS = -DSIGTYPE=int -DDIRENT -DSTRSTR_MISSING \
-DVPRINTF_MISSING -DBSD42

Set this to rtapelib.o unless you defined NO_REMOTE,
in which case make it empty.
RTAPELIB = rtapelib.o
LIBS =
DEF_AR_FILE = /dev/rmt8
DEFBLOCKING = 20

CDEBUG = -g
CFLAGS = $(CDEBUG) -I. -I$(srcdir) $(DEFS) \

gnu:guide/make 159 / 206

-DDEF_AR_FILE=\"$(DEF_AR_FILE)\" \
-DDEFBLOCKING=$(DEFBLOCKING)

LDFLAGS = -g

prefix = /usr/local
Prefix for each installed program,
normally empty or ‘g’.
binprefix =

The directory to install tar in.
bindir = $(prefix)/bin

The directory to install the info files in.
infodir = $(prefix)/info

End of system configuration section.

SRC1 = tar.c create.c extract.c buffer.c \
getoldopt.c update.c gnu.c mangle.c

SRC2 = version.c list.c names.c diffarch.c \
port.c wildmat.c getopt.c

SRC3 = getopt1.c regex.c getdate.y
SRCS = $(SRC1) $(SRC2) $(SRC3)
OBJ1 = tar.o create.o extract.o buffer.o \

getoldopt.o update.o gnu.o mangle.o
OBJ2 = version.o list.o names.o diffarch.o \

port.o wildmat.o getopt.o
OBJ3 = getopt1.o regex.o getdate.o $(RTAPELIB)
OBJS = $(OBJ1) $(OBJ2) $(OBJ3)
AUX = README COPYING ChangeLog Makefile.in \

makefile.pc configure configure.in \
tar.texinfo tar.info* texinfo.tex \
tar.h port.h open3.h getopt.h regex.h \
rmt.h rmt.c rtapelib.c alloca.c \
msd_dir.h msd_dir.c tcexparg.c \
level-0 level-1 backup-specs testpad.c

all: tar rmt tar.info

tar: $(OBJS)
$(CC) $(LDFLAGS) -o $@ $(OBJS) $(LIBS)

rmt: rmt.c
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ rmt.c

tar.info: tar.texinfo
makeinfo tar.texinfo

install: all
$(INSTALL) tar $(bindir)/$(binprefix)tar
-test ! -f rmt || $(INSTALL) rmt /etc/rmt
$(INSTALLDATA) $(srcdir)/tar.info* $(infodir)

$(OBJS): tar.h port.h testpad.h
regex.o buffer.o tar.o: regex.h
getdate.y has 8 shift/reduce conflicts.

gnu:guide/make 160 / 206

testpad.h: testpad
./testpad

testpad: testpad.o
$(CC) -o $@ testpad.o

TAGS: $(SRCS)
etags $(SRCS)

clean:
rm -f *.o tar rmt testpad testpad.h core

distclean: clean
rm -f TAGS Makefile config.status

realclean: distclean
rm -f tar.info*

shar: $(SRCS) $(AUX)
shar $(SRCS) $(AUX) | compress \

> tar-‘sed -e ’/version_string/!d’ \
-e ’s/[^0-9.]*\([0-9.]*\).*/\1/’ \
-e q
version.c‘.shar.Z

dist: $(SRCS) $(AUX)
echo tar-‘sed \

-e ’/version_string/!d’ \
-e ’s/[^0-9.]*\([0-9.]*\).*/\1/’ \
-e q
version.c‘ > .fname

-rm -rf ‘cat .fname‘
mkdir ‘cat .fname‘
ln $(SRCS) $(AUX) ‘cat .fname‘
-rm -rf ‘cat .fname‘ .fname
tar chZf ‘cat .fname‘.tar.Z ‘cat .fname‘

tar.zoo: $(SRCS) $(AUX)
-rm -rf tmp.dir
-mkdir tmp.dir
-rm tar.zoo
for X in $(SRCS) $(AUX) ; do \

echo $$X ; \
sed ’s/$$/^M/’ $$X \
> tmp.dir/$$X ; done

cd tmp.dir ; zoo aM ../tar.zoo *
-rm -rf tmp.dir

1.120 make.guide/Concept Index

Index of Concepts

gnu:guide/make 161 / 206

+, and define
Sequences

+=
Appending

,v (RCS file extension)
Catalogue of Rules

-, and define
Sequences

.c
Catalogue of Rules

.C
Catalogue of Rules

.cc
Catalogue of Rules

.ch
Catalogue of Rules

.def
Catalogue of Rules

.dvi
Catalogue of Rules

.F
Catalogue of Rules

.f
Catalogue of Rules

.info
Catalogue of Rules

.l
Catalogue of Rules

.ln
Catalogue of Rules

.mod
Catalogue of Rules

.o
Catalogue of Rules

.o
Catalogue of Rules

.p

gnu:guide/make 162 / 206

Catalogue of Rules

.r
Catalogue of Rules

.S
Catalogue of Rules

.s
Catalogue of Rules

.sh
Catalogue of Rules

.sym
Catalogue of Rules

.tex
Catalogue of Rules

.texi
Catalogue of Rules

.texinfo
Catalogue of Rules

.txinfo
Catalogue of Rules

.w
Catalogue of Rules

.web
Catalogue of Rules

.y
Catalogue of Rules

:=
Flavors

:=
Setting

=
Flavors

=
Setting

@, and define
Sequences

#include
Automatic Dependencies

(comments), in commands

gnu:guide/make 163 / 206

Commands

(comments), in makefile
Makefile Contents

$, in function call
Syntax of Functions

$, in rules
Rule Syntax

$, in variable name
Computed Names

$, in variable reference
Reference

%, in pattern rules
Pattern Intro

%, quoting in patsubst
Text Functions

%, quoting in vpath
Selective Search

%, quoting in static pattern
Static Usage

%, quoting with \ (backslash)
Text Functions

%, quoting with \ (backslash)
Static Usage

%, quoting with \ (backslash)
Selective Search

* (wildcard character)
Wildcards

-assume-new
Instead of Execution

-assume-new
Options Summary

-assume-new, and recursion
Options-Recursion

-assume-old
Avoiding Compilation

-assume-old
Options Summary

-assume-old, and recursion

gnu:guide/make 164 / 206

Options-Recursion

-debug
Options Summary

-directory
Options Summary

-directory
Recursion

-directory, and -print-directory
-w Option

-directory, and recursion
Options-Recursion

-dry-run
Echoing

-dry-run
Options Summary

-dry-run
Instead of Execution

-environment-overrides
Options Summary

-file
Options Summary

-file
Makefile Names

-file
Makefile Arguments

-file, and recursion
Options-Recursion

-help
Options Summary

-ignore-errors
Options Summary

-ignore-errors
Errors

-include-dir
Options Summary

-include-dir
Include

-include-dir, and recursion

gnu:guide/make 165 / 206

Options-Recursion

-jobs
Parallel

-jobs
Options Summary

-jobs, and recursion
Options-Recursion

-just-print
Options Summary

-just-print
Echoing

-just-print
Instead of Execution

-keep-going
Testing

-keep-going
Errors

-keep-going
Options Summary

-load-average
Options Summary

-load-average
Parallel

-makefile
Makefile Names

-makefile
Options Summary

-makefile
Makefile Arguments

-max-load
Parallel

-max-load
Options Summary

-new-file
Options Summary

-new-file
Instead of Execution

-new-file, and recursion

gnu:guide/make 166 / 206

Options-Recursion

-no-builtin-rules
Options Summary

-no-keep-going
Options Summary

-no-print-directory
-w Option

-no-print-directory
Options Summary

-old-file
Options Summary

-old-file
Avoiding Compilation

-old-file, and recursion
Options-Recursion

-print-data-base
Options Summary

-print-directory
Options Summary

-print-directory, and -directory
-w Option

-print-directory, and recursion
-w Option

-print-directory, disabling
-w Option

-question
Options Summary

-question
Instead of Execution

-quiet
Echoing

-quiet
Options Summary

-recon
Options Summary

-recon
Echoing

-recon

gnu:guide/make 167 / 206

Instead of Execution

-silent
Echoing

-silent
Options Summary

-stop
Options Summary

-touch
Instead of Execution

-touch
Options Summary

-touch, and recursion
MAKE Variable

-version
Options Summary

-warn-undefined-variables
Options Summary

-what-if
Options Summary

-what-if
Instead of Execution

-b
Options Summary

-C
Options Summary

-C
Recursion

-C, and -w
-w Option

-C, and recursion
Options-Recursion

-d
Options Summary

-e
Options Summary

-e (shell flag)
Automatic Dependencies

-f

gnu:guide/make 168 / 206

Makefile Arguments

-f
Options Summary

-f
Makefile Names

-f, and recursion
Options-Recursion

-h
Options Summary

-I
Options Summary

-i
Errors

-I
Include

-i
Options Summary

-I, and recursion
Options-Recursion

-j
Options Summary

-j
Parallel

-j, and archive update
Archive Pitfalls

-j, and recursion
Options-Recursion

-k
Testing

-k
Options Summary

-k
Errors

-l
Options Summary

-l (library search)
Libraries-Search

-l (load average)

gnu:guide/make 169 / 206

Parallel

-MM (to GNU compiler)
Automatic Dependencies

-m
Options Summary

-M (to compiler)
Automatic Dependencies

-n
Options Summary

-n
Echoing

-n
Instead of Execution

-o
Options Summary

-o
Avoiding Compilation

-o, and recursion
Options-Recursion

-p
Options Summary

-q
Options Summary

-q
Instead of Execution

-r
Options Summary

-s
Echoing

-S
Options Summary

-s
Options Summary

-t
Options Summary

-t
Instead of Execution

-t, and recursion

gnu:guide/make 170 / 206

MAKE Variable

-v
Options Summary

-W
Instead of Execution

-W
Options Summary

-w
Options Summary

-w, and -C
-w Option

-w, and recursion
-w Option

-W, and recursion
Options-Recursion

-w, disabling
-w Option

- (in commands)
Errors

.a (archives)
Archive Suffix Rules

.d
Automatic Dependencies

.PRECIOUS intermediate files
Chained Rules

:: rules (double-colon)
Double-Colon

? (wildcard character)
Wildcards

@ (in commands)
Echoing

all (standard target)
Goals

cd (shell command)
MAKE Variable

cd (shell command)
Execution

check (standard target)

gnu:guide/make 171 / 206

Goals

clean (standard target)
Goals

clean target
Simple Makefile

clean target
Cleanup

clobber (standard target)
Goals

distclean (standard target)
Goals

dist (standard target)
Goals

FORCE
Force Targets

install (standard target)
Goals

lint, rule to run
Catalogue of Rules

lpr (shell command)
Empty Targets

lpr (shell command)
Wildcard Examples

make depend
Automatic Dependencies

mostlyclean (standard target)
Goals

OBJECTS
Variables Simplify

objects
Variables Simplify

objs
Variables Simplify

OBJS
Variables Simplify

obj
Variables Simplify

OBJ

gnu:guide/make 172 / 206

Variables Simplify

print (standard target)
Goals

print target
Wildcard Examples

print target
Empty Targets

README
Makefile Names

realclean (standard target)
Goals

rm (shell command)
Phony Targets

rm (shell command)
Errors

rm (shell command)
Wildcard Examples

rm (shell command)
Simple Makefile

sed (shell command)
Automatic Dependencies

shar (standard target)
Goals

TAGS (standard target)
Goals

tar (standard target)
Goals

test (standard target)
Goals

touch (shell command)
Empty Targets

touch (shell command)
Wildcard Examples

VPATH, and implicit rules
Implicit-Search

VPATH, and link libraries
Libraries-Search

yacc

gnu:guide/make 173 / 206

Sequences

[...] (wildcard characters)
Wildcards

\ (backslash), for continuation lines
Simple Makefile

\ (backslash), in commands
Execution

\ (backslash), to quote %
Static Usage

\ (backslash), to quote %
Selective Search

\ (backslash), to quote %
Text Functions

__.SYMDEF
Archive Symbols

~ (tilde)
Wildcards

TeX, rule to run
Catalogue of Rules

appending to variables
Appending

ar
Implicit Variables

archive
Archives

archive member targets
Archive Members

archive symbol directory updating
Archive Symbols

archive, and -j
Archive Pitfalls

archive, and parallel execution
Archive Pitfalls

archive, suffix rule for
Archive Suffix Rules

Arg list too long
Options-Recursion

arguments of functions

gnu:guide/make 174 / 206

Syntax of Functions

as
Catalogue of Rules

as
Implicit Variables

assembly, rule to compile
Catalogue of Rules

automatic generation of dependencies
Automatic Dependencies

automatic generation of dependencies
Include

automatic variables
Automatic

backquotes
Shell Function

backslash (\), for continuation lines
Simple Makefile

backslash (\), in commands
Execution

backslash (\), to quote %
Selective Search

backslash (\), to quote %
Text Functions

backslash (\), to quote %
Static Usage

basename
Filename Functions

broken pipe
Parallel

bugs, reporting
Bugs

built-in special targets
Special Targets

C++, rule to compile
Catalogue of Rules

C, rule to compile
Catalogue of Rules

cc

gnu:guide/make 175 / 206

Implicit Variables

cc
Catalogue of Rules

chains of rules
Chained Rules

cleaning up
Cleanup

co
Implicit Variables

co
Catalogue of Rules

combining rules by dependency
Combine By Dependency

command line variable definitions, and recursion
Options-Recursion

command line variables
Overriding

commands
Rule Syntax

commands, backslash (\) in
Execution

commands, comments in
Commands

commands, echoing
Echoing

commands, empty
Empty Commands

commands, errors in
Errors

commands, execution
Execution

commands, execution in parallel
Parallel

commands, expansion
Shell Function

commands, how to write
Commands

commands, instead of executing

gnu:guide/make 176 / 206

Instead of Execution

commands, introduction to
Rule Introduction

commands, quoting newlines in
Execution

commands, sequences of
Sequences

comments, in commands
Commands

comments, in makefile
Makefile Contents

compatibility
Features

compatibility in exporting
Variables-Recursion

compilation, testing
Testing

computed variable name
Computed Names

conditionals
Conditionals

continuation lines
Simple Makefile

conventions for makefiles
Makefile Conventions

ctangle
Implicit Variables

ctangle
Catalogue of Rules

cweave
Implicit Variables

cweave
Catalogue of Rules

deducing commands (implicit rules)
make Deduces

default goal
How Make Works

default goal

gnu:guide/make 177 / 206

Rules

default makefile name
Makefile Names

default rules, last-resort
Last Resort

defining variables verbatim
Defining

deletion of target files
Errors

deletion of target files
Interrupts

dependencies
Rule Syntax

dependencies, automatic generation
Include

dependencies, automatic generation
Automatic Dependencies

dependencies, introduction to
Rule Introduction

dependencies, list of all
Automatic

dependencies, list of changed
Automatic

dependencies, varying (static pattern)
Static Pattern

dependency
Rules

dependency pattern, implicit
Pattern Intro

dependency pattern, static (not implicit)
Static Usage

directive
Makefile Contents

directories, printing them
-w Option

directories, updating archive symbol
Archive Symbols

directory part

gnu:guide/make 178 / 206

Filename Functions

directory search (VPATH)
Directory Search

directory search (VPATH), and implicit rules
Implicit-Search

directory search (VPATH), and link libraries
Libraries-Search

directory search (VPATH), and shell commands
Commands-Search

dollar sign ($), in function call
Syntax of Functions

dollar sign ($), in rules
Rule Syntax

dollar sign ($), in variable name
Computed Names

dollar sign ($), in variable reference
Reference

double-colon rules
Double-Colon

duplicate words, removing
Text Functions

E2BIG
Options-Recursion

echoing of commands
Echoing

editor
Introduction

Emacs (M-x compile)
Errors

empty commands
Empty Commands

empty targets
Empty Targets

environment
Environment

environment, SHELL in
Execution

environment, and recursion

gnu:guide/make 179 / 206

Variables-Recursion

errors (in commands)
Errors

errors with wildcards
Wildcard Pitfall

execution, in parallel
Parallel

execution, instead of
Instead of Execution

execution, of commands
Execution

exit status (errors)
Errors

explicit rule, definition of
Makefile Contents

exporting variables
Variables-Recursion

f77
Implicit Variables

f77
Catalogue of Rules

features of GNU make
Features

features, missing
Missing

file name functions
Filename Functions

file name of makefile
Makefile Names

file name of makefile, how to specify
Makefile Names

file name prefix, adding
Filename Functions

file name suffix
Filename Functions

file name suffix, adding
Filename Functions

file name with wildcards

gnu:guide/make 180 / 206

Wildcards

file name, basename of
Filename Functions

file name, directory part
Filename Functions

file name, nondirectory part
Filename Functions

files, assuming new
Instead of Execution

files, assuming old
Avoiding Compilation

files, avoiding recompilation of
Avoiding Compilation

files, intermediate
Chained Rules

filtering out words
Text Functions

filtering words
Text Functions

finding strings
Text Functions

flags
Options Summary

flags for compilers
Implicit Variables

flavors of variables
Flavors

force targets
Force Targets

Fortran, rule to compile
Catalogue of Rules

functions
Functions

functions, for file names
Filename Functions

functions, for text
Text Functions

functions, syntax of

gnu:guide/make 181 / 206

Syntax of Functions

g++
Implicit Variables

g++
Catalogue of Rules

gcc
Catalogue of Rules

generating dependencies automatically
Include

generating dependencies automatically
Automatic Dependencies

get
Catalogue of Rules

get
Implicit Variables

globbing (wildcards)
Wildcards

goal
How Make Works

goal, default
How Make Works

goal, default
Rules

goal, how to specify
Goals

home directory
Wildcards

IEEE Standard 1003.2
Overview

implicit rule
Implicit Rules

implicit rule, and VPATH
Implicit-Search

implicit rule, and directory search
Implicit-Search

implicit rule, definition of
Makefile Contents

implicit rule, how to use

gnu:guide/make 182 / 206

Using Implicit

implicit rule, introduction to
make Deduces

implicit rule, predefined
Catalogue of Rules

implicit rule, search algorithm
Search Algorithm

including (MAKEFILES variable)
MAKEFILES Variable

including other makefiles
Include

incompatibilities
Missing

Info, rule to format
Catalogue of Rules

intermediate files
Chained Rules

intermediate files, preserving
Chained Rules

interrupt
Interrupts

job slots
Parallel

job slots, and recursion
Options-Recursion

jobs, limiting based on load
Parallel

joining lists of words
Filename Functions

killing (interruption)
Interrupts

last-resort default rules
Last Resort

ld
Catalogue of Rules

lex
Implicit Variables

lex

gnu:guide/make 183 / 206

Catalogue of Rules

Lex, rule to run
Catalogue of Rules

libraries for linking, directory search
Libraries-Search

library archive, suffix rule for
Archive Suffix Rules

limiting jobs based on load
Parallel

link libraries, and directory search
Libraries-Search

linking, predefined rule for
Catalogue of Rules

lint
Catalogue of Rules

list of all dependencies
Automatic

list of changed dependencies
Automatic

load average
Parallel

loops in variable expansion
Flavors

m2c
Catalogue of Rules

macro
Using Variables

makefile
Introduction

makefile name
Makefile Names

makefile name, how to specify
Makefile Names

makefile rule parts
Rule Introduction

makefile, and MAKEFILES variable
MAKEFILES Variable

makefile, conventions for

gnu:guide/make 184 / 206

Makefile Conventions

makefile, how make processes
How Make Works

makefile, how to write
Makefiles

makefile, including
Include

makefile, overriding
Overriding Makefiles

makefile, remaking of
Remaking Makefiles

makefile, simple
Simple Makefile

makeinfo
Catalogue of Rules

makeinfo
Implicit Variables

match-anything rule
Match-Anything Rules

match-anything rule, used to override
Overriding Makefiles

missing features
Missing

mistakes with wildcards
Wildcard Pitfall

modified variable reference
Substitution Refs

Modula-2, rule to compile
Catalogue of Rules

multiple rules for one target
Multiple Rules

multiple rules for one target (::)
Double-Colon

multiple targets
Multiple Targets

multiple targets, in pattern rule
Pattern Intro

name of makefile

gnu:guide/make 185 / 206

Makefile Names

name of makefile, how to specify
Makefile Names

nested variable reference
Computed Names

newline, quoting, in commands
Execution

newline, quoting, in makefile
Simple Makefile

nondirectory part
Filename Functions

old-fashioned suffix rules
Suffix Rules

options
Options Summary

options, and recursion
Options-Recursion

options, setting from environment
Options-Recursion

options, setting in makefiles
Options-Recursion

order of pattern rules
Pattern Intro

origin of variable
Origin Function

overriding makefiles
Overriding Makefiles

overriding variables with arguments
Overriding

overriding with override
Override Directive

parallel execution
Parallel

parallel execution, and archive update
Archive Pitfalls

parts of makefile rule
Rule Introduction

Pascal, rule to compile

gnu:guide/make 186 / 206

Catalogue of Rules

pattern rule
Pattern Intro

pattern rules, order of
Pattern Intro

pattern rules, static (not implicit)
Static Pattern

pattern rules, static, syntax of
Static Usage

pc
Catalogue of Rules

pc
Implicit Variables

phony targets
Phony Targets

pitfalls of wildcards
Wildcard Pitfall

portability
Features

POSIX
Overview

POSIX.2
Options-Recursion

precious targets
Special Targets

prefix, adding
Filename Functions

preserving intermediate files
Chained Rules

preserving with .PRECIOUS
Chained Rules

preserving with .PRECIOUS
Special Targets

printing directories
-w Option

printing of commands
Echoing

problems and bugs, reporting

gnu:guide/make 187 / 206

Bugs

problems with wildcards
Wildcard Pitfall

processing a makefile
How Make Works

question mode
Instead of Execution

quoting %, in patsubst
Text Functions

quoting %, in vpath
Selective Search

quoting %, in static pattern
Static Usage

quoting newline, in commands
Execution

quoting newline, in makefile
Simple Makefile

Ratfor, rule to compile
Catalogue of Rules

RCS, rule to extract from
Catalogue of Rules

recompilation
Introduction

recompilation, avoiding
Avoiding Compilation

recording events with empty targets
Empty Targets

recursion
Recursion

recursion, and -C
Options-Recursion

recursion, and -f
Options-Recursion

recursion, and -I
Options-Recursion

recursion, and -j
Options-Recursion

recursion, and -o

gnu:guide/make 188 / 206

Options-Recursion

recursion, and -t
MAKE Variable

recursion, and -W
Options-Recursion

recursion, and -w
-w Option

recursion, and MAKEFILES variable
MAKEFILES Variable

recursion, and MAKE variable
MAKE Variable

recursion, and command line variable definitions
Options-Recursion

recursion, and environment
Variables-Recursion

recursion, and options
Options-Recursion

recursion, and printing directories
-w Option

recursion, and variables
Variables-Recursion

recursion, level of
Variables-Recursion

recursive variable expansion
Flavors

recursive variable expansion
Using Variables

recursively expanded variables
Flavors

reference to variables
Reference

reference to variables
Advanced

relinking
How Make Works

remaking makefiles
Remaking Makefiles

removal of target files

gnu:guide/make 189 / 206

Interrupts

removal of target files
Errors

removing duplicate words
Text Functions

removing, to clean up
Cleanup

reporting bugs
Bugs

rm
Implicit Variables

rule commands
Commands

rule dependencies
Rule Syntax

rule syntax
Rule Syntax

rule targets
Rule Syntax

rule, and $
Rule Syntax

rule, double-colon (::)
Double-Colon

rule, explicit, definition of
Makefile Contents

rule, how to write
Rules

rule, implicit
Implicit Rules

rule, implicit, and VPATH
Implicit-Search

rule, implicit, and directory search
Implicit-Search

rule, implicit, chains of
Chained Rules

rule, implicit, definition of
Makefile Contents

rule, implicit, how to use

gnu:guide/make 190 / 206

Using Implicit

rule, implicit, introduction to
make Deduces

rule, implicit, predefined
Catalogue of Rules

rule, introduction to
Rule Introduction

rule, multiple for one target
Multiple Rules

rule, no commands or dependencies
Force Targets

rule, pattern
Pattern Intro

rule, static pattern
Static Pattern

rule, static pattern versus implicit
Static versus Implicit

rule, with multiple targets
Multiple Targets

s. (SCCS file prefix)
Catalogue of Rules

SCCS, rule to extract from
Catalogue of Rules

search algorithm, implicit rule
Search Algorithm

search path for dependencies (VPATH)
Directory Search

search path for dependencies (VPATH), and implicit rules
Implicit-Search

search path for dependencies (VPATH), and link libraries
Libraries-Search

searching for strings
Text Functions

selecting words
Filename Functions

sequences of commands
Sequences

setting options from environment

gnu:guide/make 191 / 206

Options-Recursion

setting options in makefiles
Options-Recursion

setting variables
Setting

several rules for one target
Multiple Rules

several targets in a rule
Multiple Targets

shell command
Simple Makefile

shell command, and directory search
Commands-Search

shell command, execution
Execution

shell command, function for
Shell Function

shell file name pattern (in include)
Include

shell wildcards (in include)
Include

signal
Interrupts

silent operation
Echoing

simple makefile
Simple Makefile

simple variable expansion
Using Variables

simplifying with variables
Variables Simplify

simply expanded variables
Flavors

sorting words
Text Functions

spaces, in variable values
Flavors

spaces, stripping

gnu:guide/make 192 / 206

Text Functions

special targets
Special Targets

specifying makefile name
Makefile Names

standard input
Parallel

standards conformance
Overview

standards for makefiles
Makefile Conventions

static pattern rule
Static Pattern

static pattern rule, syntax of
Static Usage

static pattern rule, versus implicit
Static versus Implicit

stem
Static Usage

stem
Pattern Match

stem, variable for
Automatic

strings, searching for
Text Functions

stripping whitespace
Text Functions

sub-make
Variables-Recursion

subdirectories, recursion for
Recursion

substitution variable reference
Substitution Refs

suffix rule
Suffix Rules

suffix rule, for archive
Archive Suffix Rules

suffix, adding

gnu:guide/make 193 / 206

Filename Functions

suffix, function to find
Filename Functions

suffix, substituting in variables
Substitution Refs

switches
Options Summary

symbol directories, updating archive
Archive Symbols

syntax of rules
Rule Syntax

tab character (in commands)
Rule Syntax

tabs in rules
Rule Introduction

tangle
Implicit Variables

tangle
Catalogue of Rules

target
Rules

target pattern, implicit
Pattern Intro

target pattern, static (not implicit)
Static Usage

target, deleting on error
Errors

target, deleting on interrupt
Interrupts

target, multiple in pattern rule
Pattern Intro

target, multiple rules for one
Multiple Rules

target, touching
Instead of Execution

targets
Rule Syntax

targets without a file

gnu:guide/make 194 / 206

Phony Targets

targets, built-in special
Special Targets

targets, empty
Empty Targets

targets, force
Force Targets

targets, introduction to
Rule Introduction

targets, multiple
Multiple Targets

targets, phony
Phony Targets

terminal rule
Match-Anything Rules

testing compilation
Testing

tex
Catalogue of Rules

tex
Implicit Variables

texi2dvi
Implicit Variables

texi2dvi
Catalogue of Rules

Texinfo, rule to format
Catalogue of Rules

tilde (~)
Wildcards

touching files
Instead of Execution

undefined variables, warning message
Options Summary

updating archive symbol directories
Archive Symbols

updating makefiles
Remaking Makefiles

value

gnu:guide/make 195 / 206

Using Variables

value, how a variable gets it
Values

variable
Using Variables

variable definition
Makefile Contents

variables
Variables Simplify

variables, $ in name
Computed Names

variables, and implicit rule
Automatic

variables, appending to
Appending

variables, automatic
Automatic

variables, command line
Overriding

variables, command line, and recursion
Options-Recursion

variables, computed names
Computed Names

variables, defining verbatim
Defining

variables, environment
Variables-Recursion

variables, environment
Environment

variables, exporting
Variables-Recursion

variables, flavors
Flavors

variables, how they get their values
Values

variables, how to reference
Reference

variables, loops in expansion

gnu:guide/make 196 / 206

Flavors

variables, modified reference
Substitution Refs

variables, nested references
Computed Names

variables, origin of
Origin Function

variables, overriding
Override Directive

variables, overriding with arguments
Overriding

variables, recursively expanded
Flavors

variables, setting
Setting

variables, simply expanded
Flavors

variables, spaces in values
Flavors

variables, substituting suffix in
Substitution Refs

variables, substitution reference
Substitution Refs

variables, warning for undefined
Options Summary

varying dependencies
Static Pattern

verbatim variable definition
Defining

vpath
Directory Search

weave
Implicit Variables

weave
Catalogue of Rules

Web, rule to run
Catalogue of Rules

what if

gnu:guide/make 197 / 206

Instead of Execution

whitespace, in variable values
Flavors

whitespace, stripping
Text Functions

wildcard
Wildcards

wildcard pitfalls
Wildcard Pitfall

wildcard, function
Filename Functions

wildcard, in include
Include

wildcard, in archive member
Archive Members

words, extracting first
Filename Functions

words, filtering
Text Functions

words, filtering out
Text Functions

words, finding number
Filename Functions

words, iterating over
Foreach Function

words, joining lists
Filename Functions

words, removing duplicates
Text Functions

words, selecting
Filename Functions

writing rule commands
Commands

writing rules
Rules

yacc
Catalogue of Rules

yacc

gnu:guide/make 198 / 206

Implicit Variables

Yacc, rule to run
Catalogue of Rules

1.121 make.guide/Name Index

Index of Functions, Variables, & Directives

$%
Automatic

$(%D)
Automatic

$(%F)
Automatic

$(*D)
Automatic

$(*F)
Automatic

$(<D)
Automatic

$(<F)
Automatic

$(?D)
Automatic

$(?F)
Automatic

$(@D)
Automatic

$(@F)
Automatic

$(^D)
Automatic

$(^F)
Automatic

$*

gnu:guide/make 199 / 206

Automatic

$*, and static pattern
Static Usage

$+
Automatic

$<
Automatic

$?
Automatic

$@
Automatic

$^
Automatic

% (automatic variable)
Automatic

%D (automatic variable)
Automatic

%F (automatic variable)
Automatic

* (automatic variable), unsupported bizarre usage
Missing

* (automatic variable)
Automatic

*D (automatic variable)
Automatic

*F (automatic variable)
Automatic

+ (automatic variable)
Automatic

.DEFAULT
Last Resort

.DEFAULT
Special Targets

.DEFAULT, and empty commands
Empty Commands

.DELETE_ON_ERROR
Errors

.EXPORT_ALL_VARIABLES

gnu:guide/make 200 / 206

Variables-Recursion

.EXPORT_ALL_VARIABLES
Special Targets

.IGNORE
Errors

.IGNORE
Special Targets

.PHONY
Special Targets

.PHONY
Phony Targets

.POSIX
Options-Recursion

.PRECIOUS
Interrupts

.PRECIOUS
Special Targets

.SILENT
Special Targets

.SILENT
Echoing

.SUFFIXES
Special Targets

.SUFFIXES
Suffix Rules

/usr/gnu/include
Include

/usr/include
Include

/usr/local/include
Include

< (automatic variable)
Automatic

<D (automatic variable)
Automatic

<F (automatic variable)
Automatic

? (automatic variable)

gnu:guide/make 201 / 206

Automatic

?D (automatic variable)
Automatic

?F (automatic variable)
Automatic

@ (automatic variable)
Automatic

@D (automatic variable)
Automatic

@F (automatic variable)
Automatic

addprefix
Filename Functions

addsuffix
Filename Functions

AR
Implicit Variables

ARFLAGS
Implicit Variables

AS
Implicit Variables

ASFLAGS
Implicit Variables

basename
Filename Functions

CC
Implicit Variables

CFLAGS
Implicit Variables

CO
Implicit Variables

COFLAGS
Implicit Variables

CPP
Implicit Variables

CPPFLAGS
Implicit Variables

CTANGLE

gnu:guide/make 202 / 206

Implicit Variables

CWEAVE
Implicit Variables

CXX
Implicit Variables

CXXFLAGS
Implicit Variables

define
Defining

dir
Filename Functions

else
Conditional Syntax

endef
Defining

endif
Conditional Syntax

export
Variables-Recursion

FC
Implicit Variables

FFLAGS
Implicit Variables

filter
Text Functions

filter-out
Text Functions

findstring
Text Functions

firstword
Filename Functions

foreach
Foreach Function

GET
Implicit Variables

GFLAGS
Implicit Variables

GNUmakefile

gnu:guide/make 203 / 206

Makefile Names

ifdef
Conditional Syntax

ifeq
Conditional Syntax

ifndef
Conditional Syntax

ifneq
Conditional Syntax

include
Include

join
Filename Functions

LDFLAGS
Implicit Variables

LEX
Implicit Variables

LFLAGS
Implicit Variables

MAKE
MAKE Variable

MAKE
Flavors

Makefile
Makefile Names

makefile
Makefile Names

MAKEFILES
Variables-Recursion

MAKEFILES
MAKEFILES Variable

MAKEFLAGS
Options-Recursion

MAKEINFO
Implicit Variables

MAKELEVEL
Variables-Recursion

MAKELEVEL

gnu:guide/make 204 / 206

Flavors

MAKEOVERRIDES
Options-Recursion

MFLAGS
Options-Recursion

notdir
Filename Functions

origin
Origin Function

OUTPUT_OPTION
Catalogue of Rules

override
Override Directive

patsubst
Text Functions

patsubst
Substitution Refs

PC
Implicit Variables

PFLAGS
Implicit Variables

RFLAGS
Implicit Variables

RM
Implicit Variables

SHELL
Execution

shell
Shell Function

SHELL (command execution)
Execution

sort
Text Functions

strip
Text Functions

subst
Text Functions

subst

gnu:guide/make 205 / 206

Multiple Targets

suffix
Filename Functions

SUFFIXES
Suffix Rules

TANGLE
Implicit Variables

TEX
Implicit Variables

TEXI2DVI
Implicit Variables

unexport
Variables-Recursion

vpath
Directory Search

VPATH
General Search

vpath
Selective Search

VPATH
Directory Search

WEAVE
Implicit Variables

wildcard
Filename Functions

wildcard
Wildcard Function

word
Filename Functions

words
Filename Functions

YACC
Implicit Variables

YACCR
Implicit Variables

YFLAGS
Implicit Variables

^ (automatic variable)

gnu:guide/make 206 / 206

Automatic

^D (automatic variable)
Automatic

^F (automatic variable)
Automatic

	gnu:guide/make
	gnu:guide/make.guide
	make.guide/Overview
	make.guide/Preparing
	make.guide/Reading
	make.guide/Bugs
	make.guide/Introduction
	make.guide/Rule Introduction
	make.guide/Simple Makefile
	make.guide/How Make Works
	make.guide/Variables Simplify
	make.guide/make Deduces
	make.guide/Combine By Dependency
	make.guide/Cleanup
	make.guide/Makefiles
	make.guide/Makefile Contents
	make.guide/Makefile Names
	make.guide/Include
	make.guide/MAKEFILES Variable
	make.guide/Remaking Makefiles
	make.guide/Overriding Makefiles
	make.guide/Rules
	make.guide/Rule Example
	make.guide/Rule Syntax
	make.guide/Wildcards
	make.guide/Wildcard Examples
	make.guide/Wildcard Pitfall
	make.guide/Wildcard Function
	make.guide/Directory Search
	make.guide/General Search
	make.guide/Selective Search
	make.guide/Commands-Search
	make.guide/Implicit-Search
	make.guide/Libraries-Search
	make.guide/Phony Targets
	make.guide/Force Targets
	make.guide/Empty Targets
	make.guide/Special Targets
	make.guide/Multiple Targets
	make.guide/Multiple Rules
	make.guide/Static Pattern
	make.guide/Static Usage
	make.guide/Static versus Implicit
	make.guide/Double-Colon
	make.guide/Automatic Dependencies
	make.guide/Commands
	make.guide/Echoing
	make.guide/Execution
	make.guide/Parallel
	make.guide/Errors
	make.guide/Interrupts
	make.guide/Recursion
	make.guide/MAKE Variable
	make.guide/Variables-Recursion
	make.guide/Options-Recursion
	make.guide/-w Option
	make.guide/Sequences
	make.guide/Empty Commands
	make.guide/Using Variables
	make.guide/Reference
	make.guide/Flavors
	make.guide/Advanced
	make.guide/Substitution Refs
	make.guide/Computed Names
	make.guide/Values
	make.guide/Setting
	make.guide/Appending
	make.guide/Override Directive
	make.guide/Defining
	make.guide/Environment
	make.guide/Conditionals
	make.guide/Conditional Example
	make.guide/Conditional Syntax
	make.guide/Testing Flags
	make.guide/Functions
	make.guide/Syntax of Functions
	make.guide/Text Functions
	make.guide/Filename Functions
	make.guide/Foreach Function
	make.guide/Origin Function
	make.guide/Shell Function
	make.guide/Running
	make.guide/Makefile Arguments
	make.guide/Goals
	make.guide/Instead of Execution
	make.guide/Avoiding Compilation
	make.guide/Overriding
	make.guide/Testing
	make.guide/Options Summary
	make.guide/Implicit Rules
	make.guide/Using Implicit
	make.guide/Catalogue of Rules
	make.guide/Implicit Variables
	make.guide/Chained Rules
	make.guide/Pattern Rules
	make.guide/Pattern Intro
	make.guide/Pattern Examples
	make.guide/Automatic
	make.guide/Pattern Match
	make.guide/Match-Anything Rules
	make.guide/Canceling Rules
	make.guide/Last Resort
	make.guide/Suffix Rules
	make.guide/Search Algorithm
	make.guide/Archives
	make.guide/Archive Members
	make.guide/Archive Update
	make.guide/Archive Symbols
	make.guide/Archive Pitfalls
	make.guide/Archive Suffix Rules
	make.guide/Features
	make.guide/Missing
	make.guide/Makefile Conventions
	make.guide/Makefile Basics
	make.guide/Utilities in Makefiles
	make.guide/Standard Targets
	make.guide/Command Variables
	make.guide/Directory Variables
	make.guide/Quick Reference
	make.guide/Complex Makefile
	make.guide/Concept Index
	make.guide/Name Index

